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RESUMO  

 

O diagnóstico precoce da sepse ainda representa um grande desafio para o sistema de 

saúde. As alterações do metabolismo intermediário nesses pacientes em resposta a fase 

aguda devido ao estresse gerado pelo quadro clínico levam, dentre outros processos, as 

alterações no metabolismo lipídico. A identificação dessas biomoléculas como candidatos 

a biomarcadores é importante tanto para o diagnóstico precoce como para o prognóstico 

frente a essa situação crítica e complexa. A proposta do presente trabalho foi (i) identificar 

potenciais biomarcadores lipídicos para diagnóstico de sepse e choque séptico por análise 

comparativa aos voluntários saudáveis, (ii) avaliar o perfil das alterações lipidômicas e 

os possíveis candidatos a biomarcadores para a infecção bacteriana e, portanto, capazes 

de diferenciar pacientes com sepse e com Síndrome da Resposta Inflamatória Sistêmica 

(SIRS) de causa não infecciosa e ainda (iii) avaliar o uso dos biomarcadores no 

prognóstico dos pacientes. O estudo, de coorte prospectiva e observacional, incluiu 

pacientes adultos com sepse, choque séptico e SIRS internados na Unidade de Terapia 

Intensiva do Hospital Universitário São Francisco na Providência de Deus no período de 

agosto de 2016 a agosto de 2018. As análises foram realizadas por cromatografia líquida 

acoplada à espectrometria de massas (CL-MS) associada a análise multivariada e a 

cromatografia à gás (GC). Na primeira fase do estudo foram triados sessenta e cinco 

pacientes, destes 30,76 % (n=20) foram incluídos na pesquisa, sendo 11 com diagnóstico 

de choque séptico e 9 com sepse. Os dados mostraram que não há diferenças entre 

pacientes com sepse e com choque séptico, entretanto, ambos mostraram uma assinatura 

molecular específica, caracterizada por níveis reduzidos de lisofosfatidilcolina e 

esfingomielina, capaz de diferenciá-los dos voluntários saudáveis. Na segunda fase do 

estudo, 21 pacientes com sepse e 21 com SRIS foram incluídos no estudo. O foco da 

infecção nos pacientes com sepse foi, em sua maioria, abdominal (43%) e pulmonar 

(33%). A taxa de mortalidade para ambos, sepse e SRIS foi de 33.3 %. A análise 

lipidômica mostrou aumento nos níveis plasmáticos de derivados de carnitina resultante 

de distúrbios da beta-oxidação mitocondrial de ácidos graxos. L-Octanoilcarnitina 

(upregulation) e ésteres de ácidos graxos ramificados de ácidos graxos hidroxilados 

(FAHFA 36:4) (dowregulation) são apontados como principais biomarcadores para 

diferenciar sepse de SIRS de causa não infecciosa. Ainda, o modelo de predição (Random 

Forest) confirmou a importância da L-Octanoilcarnitina para predizer o risco de óbito 

nos pacientes, medidas importantes que poderão ser adotadas para a otimização do 

diagnóstico e no acompanhamento da evolução de pacientes críticos. 

  

Descritores: Sepse. Síndrome da Resposta Inflamatória Sistêmica. Biomarcador. 

Lipidômica.  
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ABSTRACT 

 

Early diagnosis of sepsis continues to be a great challenge for the health system to face. 

Alterations in the intermediate metabolism of sepsis patients in response to the acute stage 

and the stress generated by the clinical condition lead to alterations in the lipidic 

metabolism, among other processes. Identifying the respective biomolecules as possible 

biomarkers is important not only to enable early diagnosis but also to determine the 

prognosis in that critical and complex situation. This work proposed to (i) identify 

potential lipid biomarkers for sepsis and septic shock diagnosis by means of comparative 

analyses with healthy volunteers; (ii) evaluate the profile of the lipidomic alterations and 

possible candidates as biomarkers for bacterial infection that would enable a distinction 

between patients with sepsis and those with Systemic Inflammatory Response Syndrome 

(SIRS) with non-infectious causes; and, furthermore. (iii) to assess the use of biomarkers 

in patient prognosis. The study, a prospective and observational cohort, included adult 

patients with sepsis, septic shock and SIRS admitted to the Intensive Therapy Unit of the 

São Francisco University Hospital in the period from August 2016 to August 2018. The 

analyses were performed using liquid chromatography coupled to (CL-MS) mass 

spectrometry and multivariate statistical analysis and gas chromatography. In the first stage 

the study screened sixty-five patients, 30.76% (n=20) of whom were included in the 

study; 11 diagnosed with septic shock and 9 with sepsis. Data revealed no differences 

between sepsis patients and septic shock patients. However, each group showed a specific 

molecular signature characterized by reduced levels of lysophosphatidylcholine and 

sphingomyelin, capable of distinguishing them from the health volunteers. In the second 

stage, 21 patients with sepsis and 21 with SIRS were included. The foci of infection in 

the sepsis patients were mainly abdominal (43%) and pulmonary (33%). Mortality rate 

for both sepsis and SIRS patients was 33.3%. Lipidomic analysis revealed increased 

plasmatic levels of carinitine derivatives resulting from disturbances in the mitochondrial 

beta-oxidation of fatty acids. L-octanoylcarnitine (upregulation) and branched fatty acid 

esters of hydroxy fatty acids (FAHFA 36:4) (downregulation) are indicated as being 

the main biomarkers for distinguishing sepsis from SIRS associated to non-infectious 

causes. Furthermore, the Random Forest prediction model confirmed the importance of 

L-octanoylcarnitin in predicting patients’ risk of death, which could enable important 

measures to be taken to optimize the diagnosis and the accompaniment of critical 

patient’s evolution. 

 

Key words: Sepsis. Systemic Inflammatory Response Syndrome. Biomarker. Lipidomic. 
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1. INTRODUÇÃO 

 

A sepse se caracteriza pela presença de sinais de disfunção orgânica, com 

manifestações clínicas decorrentes dos órgãos em disfunção. A definição de sepse foi 

alterada no último Consenso Internacional de Definição de Sepse, em 2016 (The third 

international consensus definitions for sepsis and septic shock; Sepsis-3), sendo este o 

terceiro desde a primeira publicação realizada em 1992 (BONE et al., 1992). Pela nova 

publicação sepse foi definida como uma disfunção orgânica causada pela resposta 

desregulada do organismo a uma infecção (SINGER et al., 2016).  

A sepse é um problema de saúde pública mundialmente, com alta morbimortalidade 

e gera altos custos para o sistema de saúde. Um recente estudo evidenciou que, em 2017, 

cerca de 48,9 milhões de casos de sepse e 11 milhões de mortes foram registrados em 

todo o mundo, representando 19,7% de todas as causas de morte do mundo (RUDD et al., 

2020). Em um estudo multicêntrico realizado no Brasil, envolvendo 229 instituições e 

794 pacientes, foi observado a prevalência de 29,6% dos leitos de UTI ocupados por 

pacientes sépticos. A letalidade encontrada foi de 55%, valor acima da reportada em 

países desenvolvidos (MACHADO et al., 2017).  

Todos os esforços devem ser feitos para diagnosticar a sepse em seus estágios 

iniciais quando a intervenção tem maior possibilidade de evitar o óbito. Embora não 

façam mais parte da definição de sepse, os sinais de resposta inflamatória são relevantes 

para o diagnóstico de infecção, considerando que são sinais de alerta que sinalizam a 

presença da infecção. Estes sinais, frequentes nos protocolos clínicos, indicam a 

necessidade de avaliação do paciente em quadro grave e com necessidade de intervenção 

imediata (BREKKE et al., 2019). A taquicardia é geralmente reflexa à redução da 

resistência vascular, objetivando garantir o débito cardíaco. A taquipnéia advém do 

aumento da produção de CO2, do estímulo direto do centro respiratório por citocinas ou, 

quando há insuficiência respiratória, surge em consequência da hipoxemia (HOTCHKISS 

et al., 2016). 

A intensidade da resposta inflamatória reflete a magnitude do processo 

fisiopatológico e está relacionada ao desenvolvimento de disfunções orgânicas e a um 

aumento na gravidade e mortalidade dos pacientes com sepse (HOTCHKISS et al., 2016). 

Para o diagnóstico de infecção são utilizados parâmetros clínicos e laboratoriais e para os 
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pacientes com infecção presumida ou confirmada na presença de disfunção orgânica deve 

ser tratada com urgência (SINGER et al., 2016). A problemática encontra-se na 

diferenciação da disfunção orgânica secundária a infecção ou devido a outros motivos. 

O uso de critério de Síndrome da Resposta Inflamatória Sistêmica (SRIS) para 

diagnóstico de infecção tem graves limitações uma vez que sinais de resposta inflamatória 

podem estar presentes em diversas outras situações clínicas. Tais sinais são comuns não 

só aos processos infecciosos, mas também aqueles derivados de agressão ao organismo 

por outras causas, o que compromete sua especificidade. A diferenciação entre SRIS e 

infecção é um grande desafio quando se trata de diagnosticar infecção num paciente 

politraumatizado, em pós-operatório, grande queimado ou portador de pancreatite.  

No que diz respeito à sensibilidade e relativa inespecificidade desses critérios, até 

o momento, não se dispõe de marcadores clínicos ou biológicos que possam efetivamente 

diferenciar sepse com acurácia bastante elevada. 

O diagnóstico de sepse tem sido sugerido de acordo com as manifestações clínicas 

e testes laboratoriais de rotina, podendo ser posteriormente confirmado pelo isolamento 

do agente etiológico. No entanto, nem sempre é possível estabelecer a confirmação 

precoce do quadro séptico com base somente em tais critérios, o que pode levar ao início 

tardio das intervenções terapêuticas. A utilização de biomarcadores moleculares tem se 

mostrado promissora na obtenção de resultados presuntivos rápidos e de alta acurácia. 

O biomarcador, considerado um parâmetro biológico mensurável, pode ser usado 

para vários propósitos, dependendo da finalidade do estudo. A aplicação pode ter como 

finalidade elucidar a relação causa-efeito e dose-efeito na avaliação de risco à saúde; para 

fins de diagnóstico clínico; e para fins de monitorização biológica, realizada de maneira 

sistemática e periódica (WORLD HEALTH ORGANIZATION, 1993). Há uma 

necessidade de identificar e validar para cada sistema orgânico estes parâmetros 

característicos que são indicativos de indução de disfunção orgânica, alteração clínica e 

toxicidade patológica, além de estabelecer a especificidade e sensibilidade de cada 

biomarcador e seu método para determinação (WORLD HEALTH ORGANIZATION 

1993). 
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Estudos sobre marcadores para diagnóstico e prognóstico da sepse são 

extremamente relevantes na atualidade. O desenvolvimento de novas tecnologias de 

análise nesse campo vem aumentando vertiginosamente, o que poderá contribuir com a 

redução do uso desnecessário de antibióticos e da mortalidade de pacientes por sepse. 

Nesse domínio, destacam-se os estudos lipidômicos, aplicáveis para a compreensão de 

diferentes condições infecciosas, os quais, apesar dos resultados ainda muito incipientes 

na investigação da sepse, já demonstram grande potencialidade para se tornarem 

ferramentas úteis no diagnóstico, terapêutica e prognóstico (SU et al., 2014; LUDWIG e 

HUMMON, 2017; LIU et al., 2019).  

Assim, com a intenção de identificar moléculas lipídicas diferenciais de resposta a 

um insulto infeccioso visando o diagnóstico precoce e específico da sepse para que o 

tratamento seja instituído de forma mais rápida e eficaz, a presente tese descreve a 

identificação de biomarcadores através da combinação de análises lipidômicas e 

tratamento multivariados dos dados obtidos após as análises experimentais. 

As análises lipidômicas foram realizadas por cromatografia à gás (CG) e 

cromatografia líquida acoplada a espectrometria de massa (CL-EM), técnicas clássicas de 

alta sensibilidade que permitem a avaliação rápida e precisa de diferentes classes de 

lipídeos para aplicação clínica (ZHANG et al., 2018). A cromatografia à gás e a 

cromatografia líquida fornecem informações detalhadas, permitindo quantificar 

compostos individuais da amostra. Foi usado o sistema Waters Acquity de Cromatografia 

Líquida de Ultra Performance (UPLC) acoplado a um analisador Tempo-de-Voo (TOF) 

Waters Micromass LCT equipado com uma interface electrospray (ESI). TOF são 

analisadores de alta relação custo benefício devido à alta velocidade, simplicidade e 

análise de massas não discriminatória, com custos relativamente baixos (GUILHAUS et 

al., 2000). Após as análises, o tratamento de dados foi realizado através do software 

MassLynx, (Waters Corporation).  

O tratamento por análises multivariadas foi usado com o objetivo de diferenciar em 

classes um conjunto complexo de dados, reduzindo sua dimensionalidade e maximizando 

a variância entre as classes. (GORROCHATEGUI et al., 2016). A identificação dos 

metabólitos selecionados como discriminantes foi feita através de estudos de 

fragmentação e a identidade das moléculas foi obtida em banco de dados como o Metlin 

(SMITH et al., 2005), LipidMaps (FAHY et al., 2007) ou HMDB (WISHART et al., 

2007). 
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A estrutura da tese está dividida em três capítulos, sendo que no primeiro é 

apresentado um referencial teórico sobre a sepse, abordando as características clínicas, 

epidemiológicas e o diagnóstico a partir biomarcadores usados atualmente na prática 

clínica. Também são discutidos as alterações lipídicas e novos biomarcadores 

provenientes de distúrbios no metabolismo lipídico de pacientes com sepse. O artigo de 

revisão foi publicado e apresentado no capítulo 1 (MECATTI et al., Lipidomic profile 

and candidate biomarkers in septic patients. Lipids in Health and Disease, 19, 68, 2020). 

A partir dessa revisão foi possível identificar alguns artigos na literatura que trazem 

a descrição de biomarcadores lipídicos, elementos importantes que foram usados para a 

construção da idéia principal da tese. No capítulo 2 é apresentado o artigo que aborda as 

alterações de algumas classes de lipídeos e a identificação de moléculas diferenciais 

presentes no plasma e eritrócitos de pacientes com sepse comparado ao grupo saudável 

(MECATTI et al., Lipidomic Profiling of Plasma and Erythrocytes From Septic Patients 

Reveals Potential Biomarker Candidates. Biomarker Insights, 13, 1, 2018). 

O terceiro capítulo descreve as principais vias lipídicas alteradas na sepse, as 

moléculas identificadas capazes de diferenciar SIRS de sepse assim como os possíveis 

marcadores para o prognóstico, com uma acurácia de 75%. A presença do agente 

infeccioso resulta em uma assinatura lipídica característica com potencial de auxiliar o 

diagnóstico da sepse. O estudo descreve aumento dos níveis de derivados de carnitina, 

resultante do distúrbio da oxidação mitocondrial de ácidos graxos, e a identificação da L-

octanoilcarnitina como possível candidato a biomarcador para o diagnóstico e 

prognóstico de pacientes com sepse. O capítulo descrito na forma de artigo foi 

recentemente publicado (MECATTI et al., Potential Lipid Signatures for Diagnosis and 

Prognosis of Sepsis and Systemic Inflammatory Response Syndrome. Metabolites 10, 

359, 2020). 
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2. OBJETIVOS 

 

2.1 OBJETIVO GERAL 

Identificar metabólitos lipídicos circulantes como possíveis candidatos a 

biomarcadores para corroborar no diagnóstico e prognóstico de pacientes com sepse. 

 

2.2 OBJETIVOS ESPECIFICOS 

 Identificar moléculas lipídicas diferenciais em sangue (plasma e eritrócitos) de 

pacientes com sepse e choque séptico por análise comparativa aos voluntários 

saudáveis (Capitulo II) 

 

 Avaliar a assinatura lipidômica e identificar candidatos a biomarcadores capazes 

de identificar a infeção e, portanto, diferenciar pacientes com sepse e com SIRS -

causa não infecciosa (Capitulo III) 

 

 Avaliar o uso dos biomarcadores no prognóstico dos pacientes com sepse e SIRS-

causa não infecciosa (Capitulo III)  
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3. ARTIGOS PUBLICADOS 

 

3.1 CAPÍTULO I 

 

MECATTI GC, MESSIAS MCF, CARVALHO PO. Lipidomic profile and candidate 

biomarkers in septic patients. Lipids in Health and Disease v. 19, p. 68-77, 2020. 

doi.org/10.1186/s12944-020-01246-2 

 

O artigo descreve uma revisão realizada nas principais bases de dados eletrônicas 

(PubMed, MEDLINE, Scopus e Web of Science), referente ao período 2000-2020, que 

versa sobre biomarcadores usados atualmente na prática clínica, entre eles, procalcitonina 

e proteína C reativa; e também novas abordagens para o uso de biomarcadores lipídicos. 

A proteína C reativa (PCR) e a procalcitonina (PCT) são os marcadores biológicos mais 

estudados e aplicados na clínica como ferramentas auxiliares no diagnóstico e 

prognóstico de pacientes com suspeita de infecções bacterianas. Isto se deve, em grande 

parte, a facilidade de mensuração e acessibilidade aos serviços de saúde. Entretanto, 

diferentes estudos mostram que esses marcadores têm limitações relativas à sensibilidade 

e à especificidade, o que dificulta o amplo uso na identificação de pacientes com 

diagnóstico de sepse e/ou SRIS. Dentre os mecanismos relacionados à patogênese da 

sepse estão as alterações causadas pelo metabolismo lipídico e metabolismo oxidativo. A 

revisão descreve essas alterações com foco na molécula de lisofosfatidilcolina e a 

possibilidade de usar esse metabólito como biomarcadores da sepse.  

 
 

https://lipidworld.biomedcentral.com/
https://doi.org/10.1186/s12944-020-01246-2


REVIEW Open Access

Lipidomic profile and candidate biomarkers
in septic patients
Giovana Colozza Mecatti*, Márcia Cristina Fernandes Messias and Patrícia de Oliveira Carvalho

Abstract

Sepsis is a severe disease with a high mortality rate. Identification and treatment in the initial hours of the disease
improve outcomes. Some biomarkers like procalcitonin and C-reactive protein are used for diagnosis and to access
sepsis prognosis and they can help in clinical decision-making, but none has sufficient specificity or sensitivity to be
routinely employed in clinical practice. This review seeks to evaluate lipid metabolism alterations in patients with
sepsis and the possibility of using the respective metabolites as biomarkers of the disease. A search of the main
electronic biomedical databases was conducted for the 20-year period ending in February 2020, focused on
primary research articles on biomarkers in sepsis. The keywords included sepsis, septic shock, biomarker,
metabolomic, lipidomic and lysophosphatidylcoline.
. It concludes that altered lipid profiles, along with the progress of the disease should provide new insights,
enabling a better understanding of the pathogenic mechanisms and making it possible to design new early
diagnosis and therapeutic procedures for sepsis.

Keywords: Sepsis, Septic shock, Biomarker, Metabolomic, Lipidomic, Lysophosphatidylcoline

Background
Sepsis is a major healthcare problem and affects millions of
people around the world. Patients who develop the illness
have high mortality rates (at least one in four) [1, 2]. Identi-
fication and treatment in the initial hours of the disease
considerably improve outcomes [3]. Sepsis is a situation in
which affected individuals develop an inflammatory re-
sponse to an infection that harms their own organs and cul-
minates in organ dysfunction [4]. Patients present signs of
systemic inflammatory response syndrome and sometimes
it is difficult for clinicians to define whether it is due to in-
fection or other causes [5]. In that situation, the use of bio-
markers could help with early diagnosis and improved risk
stratification and clinical decision making [6–8].
Some biomarkers have been evaluated for use in sepsis

diagnosis but none have sufficient specificity or sensitiv-
ity to be routinely employed in clinical practice.

Procalcitonin (PCT) and C-reactive protein (CRP) have
been the most widely used, but even they have limited
ability to distinguish sepsis from other inflammatory
conditions or to predict outcomes [9]. Altered lipid me-
tabolism and its pro/anti-inflammatory lipid mediators
play key roles in sepsis pathophysiology.
The use of multi-'omics’ (association of at least two

‘omic’ variables: genomic, lipidomic, proteomic or meta-
bolomic) may lead to an understanding of the patho-
physiology of the disease and to the development of
appropriate therapeutics. For example, in the treatment
cascade of an endotoxin, the performance of a drug
could alter its neutralization, influencing clearance, in-
flammation, bacterial load and mortality [10].
The objective of this review is to evaluate the changes

of lipid metabolism in patients with sepsis and the possi-
bility of using the respective metabolites as biomarkers
of this disease. A search of the main electronic biomed-
ical databases (PubMed, MEDLINE, Scopus, and Web of
Science) was conducted for the 20-year period ending in

© The Author(s). 2020 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if
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February 2020, focused on primary research articles on
biomarkers in sepsis. The keywords searched for in the
abstracts and titles included “sepsis”, “septic shock”,
“biomarker,” “metabolomic”, “lipidomic”, and “lysopho-
sphatidylcoline”. The search identified 16 references with
the words lipidomic x sepsis x septic shock, 34 refer-
ences with the words metabolomic x sepsis x septic
shock, and 13 references with the words lysophosphati-
dylcoline x sepsis x septic shock.

Review
Sepsis as a healthcare problem
Sepsis is a major healthcare problem and affects millions
of people around the world. The mortality rate among
patients that develop the illness is high (at least one in
four) [1, 2]. The actual incidence of the disease in the
world is uncertain. However, Fleischmann et al. made a
systematic bibliographic survey and based on a statistical
extrapolation of the results obtained, they suggest esti-
mates of 31.5 million cases ofinfection, 19.4 million cases
of sepsis and 5.3 million deaths per year [11].
The incidence of sepsis is increasing annually. Ana-

lyses of the occurrence of sepsis over a 22-year period
(1979 to 2000), using data of a nationally representative
sample of hospitals in the United States, identified more
than 10 million cases in 750 million hospitalizations [1].
A large observational study in a European setting re-
vealed an estimated mean sepsis incidence of 212.7 cases
per 100,000 inhabitants with an annual incidence in-
crease of 7.3%. In Brazil, sepsis incidence was 36.3 per
1000 patient-days and sepsis mortality was 55.7% [12].
Sepsis is a syndrome involving factors of both patho-

gen and host such as age, comorbidities, environment
and race. It is defined as a life-threatening organ dys-
function caused by a dysregulated host response to in-
fection; a situation in which affected individuals develop
an inflammatory response to an infection injuring their
own organs and culminating in organ dysfunction. Sep-
tic shock is defined as a subset of sepsis in which under-
lying circulatory and cellular metabolism abnormalities
are profound enough to substantially increase mortality.
The patients present persistent hypotension requiring
vasopressors to maintain mean arterial pressure ≥ 65
mmHg and hyperlactatemia in the absence of hypovol-
emia. In septic shock, mortality is more elevated (> 40%)
and early identification and treatment in the initial hours
of the disease improve outcomes [3].
Sepsis, similar to other systemic inflammatory re-

sponse syndromes, is characterized by increased secre-
tion of stress hormones (e.g. catecholamines and
cortisol) and cytokines, complement system activation
and mitochondrial dysfunction with decreased availabil-
ity of ATP. Sepsis-related inflammation causes microcir-
culatory dysfunction, inadequate tissue oxygen supply

and subcellular and cellular dysfunction [13]. Initially, in
response to infection, the innate immunity is activated
when microorganisms contact receptors localized in cell
surfaces (toll-like receptors - TLR). Binding TLR stimu-
lates intracellular signaling and, in turn, production of
proinflammatory (TNF- α, IL-1) and anti-inflammatory
molecules (IL-10) [14, 15]. There is an alteration to the
pro-oxidant-antioxidant balance. Also, there is an in-
crease in the concentration of inflammatory cytokines
(TNF-α and IL-8) and a decrease in the plasma activity
of superoxide dismutase (SOD) and catalase (CAT) [16].
TNF-α and IL-8 exert cardiac depression by reducing
myocardial shortening [17], further jeopardizing the pa-
tient’s hemodynamics. Pro-inflammatory cytokines lead
to larger adhesion molecules in neutrophils and endo-
thelial cells. Activated neutrophils promote microorgan-
ism kill and injure endothelial cells too, increasing
vascular permeability [18]. Cytokines foster coagulation,
stimulating thrombin formation in the microvascular
bed and contributing to organ failure. In addition, con-
sumption of coagulation proteins promotes bleeding
[15]. Organ failure may be explained by microvascular
occlusion, disruption of oxygenation with tissue exudate
and production of reactive oxygen types [19]. In
addition, there is evidence that in sepsis, alterations
occur in mitochondrial function, with a decrease in the
supply of tissue oxygen thereby contributing to organic
dysfunction and increased production of free radicals,
impacting on cellular metabolism and inflammatory pro-
cesses [20, 21]. The increase in the production of react-
ive oxygen species (ROS) leads to organic dysfunctions
caused by cellular and endothelial lesion due to protein
modification and lipid peroxidation [22].

Effects of infection and inflammation on lipid and
lipoprotein metabolism
Septic patients present alterations in lipid metabolism
such as hypertriglyceridemia, a decrease in HDL and
LDL-cholesterol and insulin resistance [23, 24]. Lipopro-
tein concentration can be reduced to 50% in patients
with sepsis and those reductions seem to be related to
the severity of the disease [25]. The primary decline is
found in HDL and slow recovery occurs in HDL and
LDL fractions. The decrease of HDL is not found in pa-
tients with trauma or other critical illnesses [26]. During
sepsis, HDL is elevated in the HDL-acute phase attained
in the presence of serum amyloid A, one of the three
major acute phase proteins [27], and in depleted choles-
terol and apolipoprotein A-1 [28] conditions. Inhibition
of lipoprotein lipase, upregulated hepatic triglyceride
production stimulated by hyperglycemia and hyperinsu-
linemia, the action of cytokines and the disruption of the
synthesis-utilization balance are probably responsible for
those alterations [29].
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The changes in lipid metabolism during sepsis serve as
a protective response against infection.
Lipopolysaccharide (LPS) is a constituent of Gram-

negative bacteria that is involved in the inflammatory re-
sponse to sepsis [30] and the presence of LPS in patients’
blood is a clear indicator of sepsis. However, detection of
LPS in aqueous blood is complicated by the molecule’s
amphiphilic biochemistry, which drives it to associate with
host carrier lipoproteins [31] and other molecules such as
LPS-binding protein (LBP), high-density lipoprotein
(HDL), low-density lipoprotein (LDL), very low-density
lipoprotein (VLDL) and bactericidal/permeability-increas-
ing protein [32]. Lipoproteins are known to be involved in
the response of immunity neutralizing LPS, reducing cel-
lular adhesion and reducing inducible nitric oxide syn-
thase expression [33]. The structural changes in HDL may
have a protective function and have metabolic conse-
quences [34]. Chylomicron and very low-density lipopro-
tein neutralize the biological effects of endotoxin, and
HDL particles control infection and the systemic inflam-
matory response [29].
Inflammation is modulated by lipid mediators derived

from long chain polyunsaturated fatty acids (PUFA) with
20 or 22 carbons (n-6 or n-3 families). Those lipid medi-
ators (eicosanoids and docosanoids) lead to metabolic
changes that alter the plasma FA profile [22]. Patients
with sepsis present low concentrations of n-6 and n-3
PUFAs and a high n-6/n-3 ratio and that is associated
with high mortality [35–38]. An increase in oleic acid
(C18:1 n-9) accompanied by a decrease in the unsatur-
ation index as well as in the levels of n-3 PUFA was ob-
served in erythrocyte phospholipids of septic patients as
compared to healthy controls [39]. Arachidonic acid me-
tabolism is also markedly affected in patients with sepsis.
A reduced LPS-induced release of AA and the COX-
associated AA metabolites, 11-HETE, PGE2, and TXB2
was apparent in septic patients [40]. Also, decreased
lysophosphatidylcholine (LPC) levels and increased cer-
amide (Cer) species rates in plasma are commonly asso-
ciated with sepsis [37–41]. An investigation of sepsis
from peritonitis using a swine model monitored changes
in hemodynamic, blood chemistry, and inflammatory
markers. Mass spectrometry-based targeted quantitative
analyses of blood samples were performed and found
marked decreased in PC and LPC species [42]. Those re-
sults were supported by our group in a clinical study
which observed important alterations in lipid metabol-
ism in patients with sepsis, specifically including LPCs
and sphingomyelin (SMs). Both LPCs and SMs were
downregulated, whereas the saturated and unsaturated
PCs were upregulated in the plasma and erythrocytes of
septic patients [39]. Previous studies have also demon-
strated an increase in circulating phospholipase A2 type
II (snp-PLA2) in patients with severe infection [43, 44].

Group IIA sPLA2 is an acute-phase protein that is
expressed in various tissues and cells in response to pro-
inflammatory cytokines and it serves to amplify the sys-
temic inflammatory response [45]. Members of the
sPLA2 family of enzymes generate bioactive lipid media-
tors that include lysophosphospholipids and arachidonic
acid and which can be converted to eicosanoids. Eicosa-
noids modulate cell growth and differentiation, inflam-
mation, immunity, platelet aggregation and many other
functions. Eicosanoids produced from arachidonic acid
by COX and LOX, respectively, are 2-series PG and 4-
series LT that act as mediators of inflammatory pro-
cesses [46].

Biomarkers in sepsis
With the present systemic inflammatory response syn-
drome signals, it is sometimes difficult for clinicians to
define whether it is due to infection or other causes [5].
In that situation, the use of biomarkers could help with
early diagnosis, improving risk stratification and clinical
decision-making [6–8].
Some biomarkers have been evaluated for use in sep-

sis. Most of them have been tested clinically, primarily
as prognostic markers in sepsis. There are hundreds of
biomarkers which could potentially be used for diagnosis
and prognosis in septic patients [47]. They are classified
as cytokine/chemokine biomarkers, cell marker bio-
markers, receptor biomarkers, coagulation biomarkers,
biomarkers related to vascular endothelial damage, bio-
markers related to vasodilation, biomarkers of organ
dysfunction and acute phase protein biomarkers [9].
Also, thirty-four biomarkers have been identified for use
specifically in the diagnosis of sepsis but only five of
them (CD11b, CD64, IL-12, IP-10 and PLA2-II) have re-
ported sensitivity and specificity values greater than 90%.
A study with proteomic analysis, conducted with pa-

tients with sepsis and septic shock with a pulmonary
focus, showed alterations in the proteins expressed in
surviving and non-surviving sepsis patients alike. Of a
total of 179, after excluding albumin and immunoglobu-
lins, 48 were found to have been altered (16 specific pro-
teins for survivors and 20 for non-survivors). Among the
alterations in the concentrations of the proteins found
were those associated to cytoskeletal organization, cell
movement, energy metabolism, inflammation, coagula-
tion and bleeding. The results also showed negative
regulation of apolipoproteins like ApoA2, ApoA4,
ApoC1, ApoC2, ApoC3, Apod and Pon1 [48].
So, due to their low specificity or sensitivity the use of

these biomarkers is limited in routine clinical practice.
Procalcitonin (PCT) and C-reactive protein (CRP) have
been most widely used, but even they have limited ability
to distinguish sepsis from other inflammatory conditions
or to predict outcomes. Procalcitonin (PCT) is a
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propeptide of calcitonin produced in low concentrations
by the thyroid, gastrointestinal tract and lungs in healthy
individuals. In the presence of bacterial infections, pro-
inflammatory mediators induce an upregulated production
and, with treatment, levels decrease by 50% per day [49].
The use of PCT to guide antimicrobial therapy has low to
moderate quality in minimizing endpoints like mortality,
mechanical ventilation, clinical severity and reinfection [50].
Liu et al. conducted a meta-analysis with 86 articles

and a total of 10,438 subjects included. They found de-
scriptions of 60 biomarkers and the most common were
procalcitonin, C-reactive protein, interleukin 6, soluble
triggering receptor expressed on myeloid cells-1, presep-
sin, lipopolysaccharide binding protein and CD64.
Plasma PCT, Strem-1 and presepsin had moderate diag-
nostic utility for indicating systemic response caused by
infection rather than other causes [51]. C-reactive pro-
tein (CRP) and procalcitonin are the most commonly
used biomarkers. However, CRP has low specificity [52].
Procalcitonin is more specific [53] than CPR, but it re-
mains difficult for it to differentiate sepsis from other
non-infection causes of inflammation [54].
A recent comprehensive review of the available experi-

mental evidence has shown that different biomarkers
have clearly been demonstrated as indicating varying in-
jury mechanisms and can be used in early diagnosis for
sepsis-induced acute kidney injury [55].

Lipid biomarker
Lipids are regulators of cellular function and their me-
tabolism is altered in patients with sepsis. Based on that,

lipidomics can be used to understand the pathophysio-
logical mechanisms involved in the diagnosis and the re-
sponse to therapeutic measures [56]. Lipidomics is the
analysis of lipid metabolism and is accessed by spectro-
photometric techniques [57] and chromatography [58].
LPC has been suggested to serve as a more useful prognos-

tic marker for sepsis [37, 59, 60]. Park et al. performed a
study comparing quantitative analyses of LPC 16:0 by using
matrix-assisted laser desorption ionization time-of-flight
(MALDI-TOF) mass spectrometry and found a sensitivity
and a selectivity of medical diagnosis of sepsis estimated to
be 97.9 and 95.5% on comparing analyses of sera from pa-
tients with severe sepsis and septic shock (n = 143), pneumo-
nia patients (n = 12), and healthy individuals (n = 31) [61].
Lysophospholipids are membrane-derived phospholipids that
can arise from homeostatic lipid metabolism or as a response
to stimulus-induced cellular activation. Sources of plasma
LPC include hydrolysis of PC by secretory phospholipase A2
(sPLA2) or lecithin:cholesterol acyltransferase (LCAT). LPC,
in turn, is hydrolyzed to LPA in the plasma by autotaxin.
LPA can also be synthesized from PA by sPLA2 [62]. In the
phospholipid remodeling pathway, LPC is converted to PC
via reacylation by acyl-CoA:lysophosphatidylcholine acyl-
transferase (LPCAT) in various tissues [63]. The schematic
representation of the biosynthesis of LPC is represented in
Fig. 1.
Total LPC concentration, as well as the concentration

of the main LPC species, was markedly reduced in sepsis
patients compared to controls and the difference in
LPC-PC ratio was higher in survivors compared to non-
survivors [37].

Fig. 1 Metabolic pathways for LPC biosynthesis
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Cho et al., analyzed LPC concentration in blood sam-
ples on the first day after diagnosis of septic patients and
compared them with a control group of healthy blood
donors. The mean serum LPC concentration was signifi-
cantly lower than in the healthy controls. No difference
in serum LPC concentration was evident between survi-
vors and non- survivors and no correlation was found
with severity of the disease [59]. On the other hand a
preliminary retrospective investigation of the analyses
Ferrario et al. conducted of the plasma of 20 patients
with septic shock found that decreases of unsaturated
long-chain PC and LPC species were associated to the
event at 28-days and 90-days, in combination with clin-
ical variables such as cardiovascular SOFA score (28-day
mortality model) or renal replacement therapy (90-day
mortality model) [64].
In another study, authors evaluated serum LPC con-

centrations in patients in an emergency department with
community-acquired pneumonia and correlated them to
scores of clinical prediction indicators (pneumonia se-
verity index (PSI) and CURB-65 score) and the concen-
tration of procalcitonin. Samples of days 1 and 7 were
analyzed. The mean LPC concentrations on days 1 and 7
were significantly lower in the non-survivors. Day 1 LPC
concentrations were inversely correlated with the PSI
and CURB- 65 scores. Day 1 LPC cut-off levels<
29.6 μmol/L were associated with the need for mechan-
ical ventilation, vasopressors, intensive care unit admis-
sion, and hospital mortality [65]. Arshad et al. measured
105 phospholipids, 40 acylcarnitines, and 4 ceramides, as
well as acid sphingomyelinase activity, in plasma from
patients with community-acquired pneumonia, chronic
obstructive pulmonary disease (COPD) exacerbation
with infection and a control group, and found that
Phospholipid concentrations were greatly decreased in
community-acquired pneumonia and normalized in the
course of clinical improvement. They also observed that
changes in COPD were less pronounced, but also dif-
fered qualitatively [66].
The relation between serial LPC measurements with 28-

day mortality was analyzed in a tertiary ICU in patients
with sepsis and septic shock. Serum LPC, white blood cell,
C-reactive protein and procalcitonin levels were measured
at baseline (day 1 of admission) and day 7. The LPC con-
centration on day 7 was significantly lower in non-
survivors compared to survivors and a decreased LPC
concentration on day 7 and a sustained high concentra-
tion of procalcitonin on day 7 were useful for predicting
the 28-day mortality. LPC concentrations increased over
time in patients with appropriate antibiotics, but not in
those with inappropriate antibiotics [67].
Other lipids have also been pointed out as possible

sepsis markers. Ahn et al. evaluated alteration of the
lipid profile of mice with sepsis induced by cecal

bacterial peritonitis after ligature by cecal puncture.
They observed that among 147 lipid species in the
plasma, 13 subgroups (FA, LPA, LPC, LPE, PA, PC, PE,
PI, MG, DG, TG, SM and Cer) had alterations in sepsis.
The group also evaluated the response to administration
of LPC and LPA with altered lipid profile in response
[68].
Schmerler et al. demonstrate that acylcarnitines and

glycerophosphatidylcholines may be helpful for differen-
tiating infectious from non-infectious systemic inflam-
mation due to their significantly higher concentration in
sepsis patients [69]. Three lipids (PC(17:0/0:0, PE(P-19:
1(12Z)/0:0), PE(22:2(13Z,16Z)/15:0),)) were selected to
form a biomarker group to improve risk discrimination
between the sepsis-induced lung injury patients and
healthy cases [70].
Additional study design details in humans are listed in

Table 1.

Conclusion
In concluding this review, we can say that altered lipid
profiles, along with the progress of diseases, should pro-
vide new insights that will enable a better understanding
of the physiopathology of sepsis, contributing new possi-
bilities for effective diagnoses and therapies. The current
review deals with the lipid molecules that are up-
regulated or down-regulated during the early stages of
sepsis, as shown in the data presented in the present re-
view and in earlier work of our research group [39].
Based on those aspects, we suggest that replenishing the
protective molecules that are down-regulated in sepsis
while withdrawing the elevated deleterious factors may
lead to the discovery of new therapies for improving sur-
vival in septic patients; a goal that has been elusive for
decades. In view of the complexity of the sepsis re-
sponse, it is unlikely that a single ideal biomarker will
ever be found. A combination of several sepsis bio-
markers may be more effective, but that requires further
evaluation.
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EBERLIN MN, CARVALHO PO. Lipidomic Profiling of Plasma and Erythrocytes from 

Septic Patients Reveals Potential Biomarker Candidates. Biomarker Insights, v. 13, p. 1-13, 

2018. doi.org/10.1177/1177271918765137. 

 

O trabalho descreve o perfil de compostos lipídicos detectados no plasma e em 

eritrócitos de pacientes com sepse (n=9) e choque séptico (n=11), comparado aos voluntários 

saudáveis (n=20), com o objetivo de identificar potenciais marcadores metabólicos. As 

análises foram realizadas por cromatografia líquida acoplada a espectrometria de massas 

(CL-EM) e por cromatografia à gás (CG). O estudo foi aprovado pelo Comitê de Ética da 

Universidade de São Francisco (CAEE 51356315.5.0000.5514). Foram identificadas 

diferentes moléculas diferenciais incluindo lisofosfatidilcolinas (LFCs) e esfingomielinas 

(EMs) com cadeias específicas de ácidos graxos como as principais envolvidas na patogênese 

da sepse. Ambos LFCs e EMs estavam com níveis reduzidos, enquanto que as 

fosfatidilcolinas saturadas e insaturadas estavam com níveis aumentados no plasma e nos 

eritrócitos de pacientes sépticos. Um aumento nos níveis de ácido oleico (18:1 n-9) 

acompanhado por uma diminuição dos ácidos graxos poliinsaturados (AGPI) da família n-3 

foi observado nos fosfolipídios de pacientes com sepse. A redução dos níveis de AGPI n-3 

parece ter relação com o aumento de estresse oxidativo e na síntese de mediadores lipídicos 

envolvidos na inflamação, vasomotricidade e permeabilidade capilar. Os resultados sugerem 

que os metabólitos lipídicos têm grande potencial como biomarcadores clínicos para a sepse 

além de contribuir no entendimento dos mecanismos metabólicos envolvidos. O trabalho 

descreve a identificação de uma ampla variedade de lipídeos diferenciais com potencial para 

abrir novos caminhos para a medicina diagnóstica. 
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Background
Sepsis is defined as life-threatening organ dysfunction caused 
by a dysregulated host response to infection, and septic shock is 
defined as a subset of sepsis in which underlying circulatory, 
cellular, and metabolic abnormalities are profound enough to 
substantially increase mortality.1

Although the true incidence remains uncertain, conserva-
tive estimates indicate that sepsis is a leading cause of mortal-
ity and critical illness worldwide contributing to up to 
5.3 million deaths worldwide per annum.2 A study conducted 
in a general hospital in southern Brazil noted that 30% of 
admitted patients had sepsis and mortality was 66.5%.3 Silva 
et al4 reported the results of a prospective multicenter inten-
sive care unit (ICU) screening study conducted in Brazil more 
than 9 months in 2001, in which they found an incidence den-
sity of 57 per 1000 patient-days corresponding to 30.5% 
screened ICU admissions. In a multicenter study involving 75 
ICUs in all regions of Brazil 3128 patients were identified and 

521 (16.7%) were diagnosed as having infection, sepsis, or sep-
tic shock. The overall mortality in 28 days was 46.6%.5

Sepsis, similar to other systemic inflammatory response 
syndromes, is characterized by increased secretion of stress 
hormones (eg, catecholamines and cortisol), cytokine over-
production, complement activation, and mitochondrial dys-
function with decreased availability of adenosine triphosphate. 
Sepsis-related inflammation causes microcirculatory dys-
function, inadequate tissue oxygen supply, and subcellular and 
cellular dysfunction.6,7 Patients with organic dysfunction and 
hemodynamic instability present a high mortality rate from 
sepsis, and the application of adequate guideline-based ther-
apy is related to a significant decrease in mortality. Kumar 
et al found that a delay of more than 1 hour in initiating anti-
microbial use for unstable patients is related to higher mortal-
ity and so early diagnosis makes timely implementation of 
adequate therapy feasible.8 However, antimicrobial use in the 
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absence of infection has its adverse effects, including the 
development of multidrug resistant microorganisms9; there-
fore, it is important to differentiate sepsis from other causes 
of systemic inflammation.

Previous studies have also demonstrated an increase in cir-
culating phospholipase A2 type II (snp-PLA2) in patients 
with severe infection.10–16 Group IIA sPLA2 is an acute-phase 
protein that is expressed in various tissues and cells in response 
to a variety pro-inflammatory cytokines and it serves to amplify 
the inflammatory signal and mediates the various phenomena 
that are seen in the inflammatory process.14 Members of the 
sPLA2 family of enzymes generate important bioactive lipid 
mediators that include lysophosphospholipids and arachidonic 
acid and which can be converted to eicosanoids. Eicosanoids 
modulate cell growth and differentiation, immunity, inflamma-
tion, platelet aggregation, and many other functions. 
Eicosanoids produced from arachidonic acid by COX and 
LOX, respectively, are 2-series prostaglandins (PGs) and 
4-series leukotrienes that act as mediators of inflammatory 
processes.17

Elevated plasma-free fatty acid (FA) levels,18,19 changes of 
polyunsaturated FA (PUFA) metabolism,20,21 decreased 
lysophosphatidylcholine (lyso-PC) levels, and increased cera-
mide (Cer) species rates in plasma are commonly associated 
with sepsis.22–24

Biomarkers have been used in a variety of disease processes 
and can help aid in diagnosing bacterial infections or even in the 
severity of sepsis. None of the currently tested new markers has 
sufficient specificity or sensitivity to perform as diagnostic tools. 
Procalcitonin and C-reactive protein have been most widely 
used but even these have limited ability to predict outcomes and 
lack accuracy to distinguish sepsis from other inflammatory 
conditions.25 Profiles of lipids as accessed by lipidomics investi-
gations may provide a chance for early diagnosis of diseases and 
increase the possibility of successful treatment. Mass spectrom-
etry (MS) plays a prominent role in the lipid analysis. Although 
the initial cost of the equipment is high and laboratory expertise 
in the development, validation, and maintenance of MS-based 
assays may be limited, it still can be cost-effective for laborato-
ries to develop MS tests to avoid send-out costs on higher-vol-
ume tests.26 The advancement of this technology along with the 
development of new applications will accelerate the incorpora-
tion of MS into more areas of medicine.

Altered lipid profiles, along with the progress of diseases, 
together with genomics and proteomics, should provide new 
insights allowing a better understanding of the pathogenic 
mechanisms and to design new therapeutic strategies. Because 
sepsis and septic shock are accompanied by severe metabolic 
alterations, we hypothesize that a systematic characterization 
of lipids metabolites combined with multivariate data analysis 
should identify potential biomarkers. Herein we report on the 
gas chromatography (GC) and electrospray ionization quadru-
pole time-of-flight MS (ESI-MS q-ToF) monitoring of lipid 
profiles in plasma and erythrocyte membranes in the search of 

biomarkers that could diagnosis alterations in lipid dynamics in 
sepsis and septic shock.

Methods
Participants

This study has been approved by the Ethics Committee of the 
São Francisco University (CAEE 51356315.5.0000.5514). 
Written informed consent was obtained from the persons 
legally responsible for the patients according to the Declaration 
of Helsinki. This was a prospective study conducted in an adult 
medical ICU of the Hospital Universitário São Francisco na 
Providência de Deus (Bragança Paulista, SP, Brazil). A total In 
total, 65 patients admitted to the ICU during the study over a 
period of 16 months (2014 and 2015) were screened, 20 were 
included in the study (Figure 1) with sepsis (n = 9) and septic 
shock (n = 11). Exclusion criteria were age under 18 years, con-
genital lipid metabolism disorders, severe hemorrhagic distur-
bance, renal insufficiency, immunosuppressive therapy, and 
neoplasia. Blood samples were collected prior to initiation of 
enteral or parenteral therapy. The serum samples for healthy 
volunteers were collected at UNIFAG-USF (Unidade 
Integrada de Farmacologia e Gastroenterologia, Universidade 
São Francisco, Bragança Paulista, SP, Brazil) and revealed no 
clinically relevant abnormalities. Table 1 summarizes the major 
characteristics of all subjects.

Lipidomic analysis

Peripheral blood samples were drawn from patients within 
36 hours after their admission to the ICU. Plasma and leuko-
cytes were removed after centrifugation. Erythrocytes were 
washed and centrifuged twice. The samples were stored at 
−80°C until analysis. The blood samples of the control group 
(healthy volunteers) were subjected to the same procedure. 
Lipids from plasma and erythrocytes were extracted with chlo-
roform-methanol (2:1) and an aqueous solution of KCl.27 The 
lower lipid phase was collected and dried under nitrogen.

The separation of the phospholipids was performed using 
solid phase extraction with aminopropyl silica cartridges 
(Bond Elut NH2 cartridge; Agilent Technologies, Inc., 
Santa Clara, CA, USA).28 The lipid extracts were diluted in 
300 µL of methanol:chloroform (2:1) and 100 µL of this 
solution was rediluted in 400 µL of acetonitrile:chloroform 
(3:1), then 1 µL was injected into a MS using an LC (Agilent 
1290) without a column and with a flow of 0.5 mL min−1 of 
acetonitrile:H2O (1:1). The MS experiments were per-
formed on 6550 iFunnel q-ToF (Agilent Technologies) cou-
pled with a Dual Agilent Jet Stream ESI source 
(Dual-AJS-ESI). The positive ion mode was selected for the 
collection of the mass spectra using the following condi-
tions: gas temperature at 290°C, drying gas flow at 
11 L min−1, nebulizer at 45 psi, sheath gas temperature at 
350°C, sheath gas flow 12 L min−1 VCap 3000, nozzle volt-
age 320 V, fragmentor 100 V, and OCT 1 RFV pp 750 V. 
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Agilent Mass Hunter Qualitative Analysis software version 
B.07.00 was used to acquire and process the data. The 
ESI(+)-MS data were exported in Comma-Separated Values 
(CSV) files and statistical analyses were performed using 
MetaboAnalyst 2.0.

The FA composition of the phospholipids fraction of erythro-
cytes was determined by GC. The extracts were converted into FA 
methyl esters using BF3 methanol29 and a GC (Tech, Inc., Apple 
Valley, MN, USA) with a flame ionization detector equipped with 
a polar CP-Sil 88 column was used.30 Fatty acid identification was 

Figure 1.  Patient selection flowchart.

Table 1.  Demographic data and major clinical characteristics of septic patients and healthy volunteers.

Septic patients Healthy volunteers

N 20 20

Sex (M/F) 11:9 10:10

Age, y 55.7 ± 18.1 58.1 ± 11.2

BMI, kg/m2 23.4 ± 4.8 21.8 ± 3.7

Albumin, g/L 2.8 ± 0.3 4.3 ± 0.5

C-reactive protein, mg/dL* 236.8 ± 82.4* 0.38 ± 0.24

Sepsis, No. (%) 9 (45) —

Septic shock, No. (%) 11 (55) —

APACHE II 14.8 ± 6.4 —

SAPS III 48.9 ± 31.7  

SOFA score 6.3 ± 4.1 —

Primary site of infection —

Lungs (pneumonia) 15 (75)  

Urinary tract 3 (15)  

Abdomen 2 (10)  

Abbreviations: APACHE, Acute Physiology and Chronic Health Evaluation; BMI, body mass index; SAPS III, Simplified Acute Physiology Score III; SOFA, Sequential 
Organ Failure Assessment.
Data presented as mean ± SD.
*P < .001 compared with healthy volunteers.
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made by comparing retention times with authentic standards 
(Sigma-Aldrich, St. Louis, MO, USA) injected under the same 
conditions. Fatty acid composition was determined by comparing 
the retention times with authentic standards (Sigma-Aldrich) and 
calculating the relative percentages.

Statistical analysis

For the statistical analysis, each molecular feature (ion) was nor-
malized by sum, and unsupervised segregation was evaluated 
using statistical Web platform MetaboAnalyst. Principal compo-
nent analysis (PCA) was performed using Pareto and the results 
were used to show the lipids that most strongly influence the dis-
crimination between groups. To enhance data discrimination, the 
data were also analyzed using the (orthogonal) partial least 

squares discriminant analysis ((O)PLS-DA) method. Biomarkers 
were selected according to their variable importance in projection 
(VIP) values. In addition, an independent t test (P ≤ .05) was used 
to evaluate whether different biomarker candidates were statisti-
cally significant between groups. The differences of FA composi-
tion between groups were analyzed by 1-way analysis of variance, 
followed by the Tukey test and P < .05 was considered to be statis-
tically significant.

Results
To access data quality of lipid matrix data, we first performed 
an unsupervised multivariate method (PCA) because it may 
show sample outliers and/or reveal hidden biases (Figure 2). 
Our previous results showed 3 possible subgroups in septic 
patients, which are further correlated with primary site of 

Figure 2.  Top left: PCA scores plot of PC1 (first principal component) vs PC2 (second principal component) showing the separation between healthy 

volunteers (red) and septic patients (green). Top right: Loadings plot for PC1 and PC2 showing the metabolite ions (m/z) that were major contributors to 

the separation of groups observed in PCA scores plot. Bottom left: PLS-DA discrimination of MS spectra from healthy volunteers (red) and septic patients 

(green). Bottom right: Loadings plot for PC1 and PC2 showing the metabolite ions (m/z) that were major contributors to the separation of groups observed 

in PLS-DA scores plot. Analysis without previous variable selection. PCA indicates principal component analysis; PLS-DA, partial least squares 

discriminant analysis.
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infection. Because of their difference, we selected only septic 
patient from pneumonia infection as there were few number of 
other septic patients. For the statistical data analysis, the data 
of septic patient from pneumonia infection were used in the 
multivariate variable selection (MVS) to improve statistical 
results. After variable selection, the explain variance increased 
to 65% in the first 2 PCs showing the improvement of data 
analysis (Figure 3). To access the major changes in lipid analy-
sis between septic patients and healthy volunteers, we therefore 
also performed supervised statistical methods: a PLS-DA 
(Figure 4), an (O)PLS-DA (Figure 5), and cross-validation and 
permutation tests from PLS-DA (Figure 6). Both protocols 
show great robustness as indicated by their low P values in per-
mutation tests (P < 5e−4).

Possible sepsis biomarkers were revealed via VIP variables 
with high statistical significance. Figure 4 shows top 15 signifi-
cant features of the metabolite markers based the VIP projec-
tion. Potential metabolites of significant contribution are listed 
in Table 2. Results from PLS-DA and (O)PLS-DA were also 
quite similar showing minimal or no response (Y) uncorrelated 
variation in the data after variable selection. The major changes 
in the lipid profiles between septic patients and healthy volun-
teers were seen for the phosphosphingolipids and glycerophos-
phocholine classes (Figure 7). The abundances of the di-, 
monounsaturated, and/or saturated phosphosphingolipid ions 
of m/z 703, 717, 757, 785, 787, 789, 799, 801, 813, and 815 in 
septic patients were significantly decreased (Table 2). The 
abundances of the lyso-PC ions of m/z 482, 496, 518, 520, 522, 
524, 542, 544, and 546 also decreased, whereas the saturated 
and unsaturated phosphatidylcholine (PC) ions of m/z 744, 
758, 760, 780, and 782 also increased in septic patients. In 

addition, a cardiolipin ion of m/z 1518 and a phosphatidylser-
ine (PS) ion of m/z 846 were found as upregulated lipids by the 
statistical analysis (Table 2). Figure 8 shows 2 representative 
examples of ESI(+)-MS (q-ToF) of plasma lipid extract from 
healthy and septic patients.

Table 3 presents the major FA detected by GC for the 
erythrocyte phospholipids of septic patients and healthy volun-
teers. Data are given as percentage of the phospholipid fatty 
acyl species. The FA pattern in septic patients showed a marked 
increase in the sum of monounsaturated fatty acid (MUFA), 
that is, mainly oleic acid (18:1 n-9) increases accompanied by a 
decrease in total n-3 PUFA, whereas saturated and n-6 PUFA 
remains substantially unaltered. These trends lead to a 16% 
increase in the MUFA/n-6 ratio and to a 24% decrease in the 
unsaturation index. Figure 9 shows the percentage of different 
subclasses of FA in the erythrocyte phospholipid fraction.

Discussion
Glycerophosphocholine role in sepsis

Our results show that the major changes in glycerophospho-
choline species between septic and healthy patients were in 
monoacyl (lyso-PC) and diacylglycerophosphocholine (PC) as 
indicated by the PLS-DA analysis of the ESI-MS lipid profile 
data (Figure 4). We observed therefore an upregulation in PC 
and a downregulation in lyso-PC species in lipid extracts of 
both plasma and erythrocytes. The lyso-PC results from the 
action of phospholipase A2, which liberates arachidonic  
acid from PC. The action of lyso-PC on immunoregulatory 
cells is very diverse and they participate in many induced 
inflammation signaling pathway.31 Erythrocyte membrane 

Figure 3.  Left: PCA scores plot of PC1 (first principal component) vs PC2 (second principal component) showing the separation between healthy 

volunteers (red) and septic patients (green). Right: Loadings plot for PC1 and PC2 showing the metabolite ions (m/z) that were major contributors to the 

separation of groups observed in PCA scores plot. Analysis after previous variable selection with the data of septic patient from pneumonia infection was 

used in the multivariate variable selection (MVS) to improve statistical results. PCA indicates principal component analysis.
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phospholipids reflect systemic changes caused by inflammatory 
response and oxidative stress in septic patients. Their role in 
inflammation process is known to be very complex and is not 
completely understood, whereas their plasma composition can 
be directly influenced by diet.32 Generally, lyso-PC is upregu-
lated at sites of inflammation, but in sepsis, an acute systemic 
inflammatory condition, decreased levels of lyso-PC/PC ratios 
were observed (Figure 7). Such reduced ratio has been 

correlated with sepsis mortality.22 This correlation was also 
corroborated by Yan et al33 who found that therapeutic admin-
istration of lyso-PC after induction of sepsis effectively inhib-
ited lethality in mouse models. In addition, Dinkla et  al16 
showed that lyso-PC formation increases in in vitro studies 
when erythrocytes of healthy patients were treated with plasma 
of septic patients. These trends may be contradictory due to 
pro-inflammatory effects of lyso-PC, but their decrease could 

Figure 4.  Left: Scores from PLS-DA discrimination of ESI-MS data from healthy volunteers (red) and septic patients (green). Right: Important metabolite 

ions selected on the basis of VIP score. The colored boxes on the right indicate relative bin integrals from healthy volunteers and septic patients. VIP 

score is a weighted sum of squares of PLS-DA loadings taking into account the amount of explained Y-variation in each dimension. See Figures 2 and 6 

for the loading plots, permutation, and cross-validation tests. ESI-MS, electrospray ionization mass spectrometry; PLS-DA, partial least squares 

discriminant analysis; VIP, variable importance in projection.

Figure 5.  Left: (O)PLS-DA scores plot form comparison of the metabolite profiles of healthy volunteers (red) and septic patients (green). 36.5% and 11.9% 

are the scores of the T score and orthogonal T score, respectively. Right: Loadings plot for feature importance showing the metabolite ions (m/z) that were 

contributors to separation groups observed in (O)PLS-DA score plot. Analysis after previous variable selection. (O)PLS-DA indicates (orthogonal) partial 

least squares discriminant analysis.
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be a later response to inflammation due to anti-inflammatory 
lyso-PA production.

A metabolomic study performed by Kamisoglu et al24 has 
found that 5 lyso-PC species decreased significantly in the 
experimental and clinical studies of sepsis. The lyso-PC con-
centration on day 7 was significantly lower in nonsurvivors and 
lyso-PC concentrations increased over time in patients treated 
with appropriate antibiotics but not in those treated with inap-
propriate antibiotics.34 The authors found that serial measure-
ments of lyso-PC helped in the prediction of 28-day mortality 
in ICU patients with severe sepsis or septic shock.

The lysophosphatidic acid (lyso-PA) production occurs by 
action of autotaxin, a plasma lysophospholipase D35 which acts 
in lyso-PC hydrolysis and promotes lyso-PA’s anti-inflamma-
tory action on macrophages.36 Via ESI-MS, we failed to detect 
any sign of lyso-PA, maybe because they are locally formed and 
rapidly degraded in vivo.37–39 Finally, we observed a PS increase 
in septic patients, and this increase could be related to lyso-PA 
production because they also induce PS exposure of erythro-
cytes during endotoxemia.16

We also noted that Drobnik et al22 have shown a decreased 
lyso-PC/PC and increased Cer/SM ratios in septic patients as 
compared with healthy control subjects. These findings cor-
roborate the strong predictive factors for sepsis-related mortal-
ity for such ratios. Highly increased PCs seem to be sepsis 
specific because they are not detectable in systemic inflamma-
tory response syndrome samples without infection compared 
with ICU control subjects.40

Phosphosphingolipids

Inflammation triggers the acid sphingomyelinase (SMase) 
which catalyzes the hydrolysis of SM, a major component of cell 
membranes, into phosphocholine and Cer.41 These changes alter 
membrane curvature and decrease plasma membrane integrity 
enhancing PS exposure and erythrocyte clearance, contributing 
to anemia. Erythrocytes do not possess SMase activity of their 

own, but they can be exposed to secreted SMases,23,42 herein we 
observed an SM concentration decrease in septic patients (Table 
2, Figure 7), but the corresponding formation of Cer was not 
observed in the lipid extracts of both plasma and erythrocytes. 
These findings agreed with those from Dinkla et  al16 who 
observed that erythrocytes are very sensitive to Cer-induced 
changes in membrane organization suggesting that, in vivo, these 
changes quickly triggered erythrocyte clearance.43

FA profile

The FA profile of plasma phospholipids seemed very interest-
ing because these molecules carry the most important part of 
PUFA which serve as precursors for signaling molecules 
(eicosanoids and docosanoids).44 The phospholipids FA profile 
is also less affected by fat intake than other plasma lipids, ie, 
triacylglycerols or nonesterified FAs. The changes of FA profile 
from erythrocytes phospholipids in septic patients were associ-
ated mainly by an increase in oleic acid levels (C18:1 n-9) 
accompanied by a proportional decrease in n-3 PUFA and n-6 
PUFA levels (Table 3). Oleic acid is produced by stearoyl-CoA 
desaturase (SCD1), which is an enzyme localized in the endo-
plasmic reticulum that converts palmitoyl-CoA (C16:0) and 
stearoyl-CoA (C18:0) to palmitoleoyl-CoA (16:1) and oleoyl-
CoA (18:1), respectively, with stearoyl-CoA being the main 
substrate.45 These MUFAs are the key components of triglyc-
erides and membrane phospholipids. The higher percentage of 
oleic acid could reflect an adipose-stimulated lipolysis which 
has been observed in septic shock patients. Such high percent-
ages have been associated with a rising plasma nonesterified 
FA concentrations, hypoalbuminemia, and reduction in energy 
supply to the organs.18,19,46 The elevation of plasma nonesteri-
fied FA levels has been reported to produce important myocar-
dial damage, arrhythmias, and reduction in heart rate variability 
in septic patients.18 The decrease in energy supply to the organs 
contributes therefore to multiple organ failure and death.47 
Although the oleic acid affects different biological processes, 

Figure 6.  Left: Cross-validation showing the 3 performance measures (prediction accuracy, R2, and Q2) using different numbers of components. * 

indicates the best values of the currently selected measures Q2 (0.86). Right: the result of permutation test statistics summarized by a histogram (P < 5e−4).
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Figure 7.  Typical ESI(+)-MS of erythrocyte membrane showing lipid profiles for (A) healthy and (B) septic patients. (C) Lyso-PC/PC and SM/PC ratios for 

healthy and septic patients. Lyso-PC/PC ratio for healthy and septic patients was determined dividing the combined pool of lyso-PC (16:0, 18:3, 18:2, 18:1, 

18:0, 20:5, 20:4, and 20:3) by the combined pool of PC (16:X/18:Y − X + Y = 1-2, 16X/20Y X + Y = 1-5) from healthy and septic patients. The SM/PC ratio for 

healthy and septic patients was determined dividing the combine pool of SM(d18:1/16:0, d18:1/24:1, d18:1/24:0, d16:1/24:1, 16:1/24:0) by combined pool of 

PC from healthy and septic patients. For more detailed lipid class composition, see Table 2. ESI(+)-MS indicates electrospray ionization mass 

spectrometry; lyso-PC, lysophosphatidylcholine; SM, sphingomyelin.

Figure 8.  Two representatives examples of ESI(+)-MS of plasma lipid extract from (A) healthy and (B) septic patients. ESI(+)-MS indicates electrospray 

ionization mass spectrometry; PC, phosphatidylcholine.

such as decreases plasma-free FA concentration and increases 
CPT1A and UCP2 and AMPK levels, decreasing levels of 
reactive oxygen species in septic mice, its detailed mechanism 
of action is still not completely understood.48

Our results show decline in PUFAs (more specifically 
>20 carbons) which could result either from their 

degradation by peroxidation from reactive oxygen species or 
to a higher synthesis of inflammatory lipid mediators 
because these PUFAs are the precursors of eicosanoids 
(prostaglandins, prostacyclins, and thromboxanes) and doc-
osanoids (protectins and resolvins) which are involved in 
inflammation, vasomotricity, and capillary permeability.49 
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Our results are consistent with those described by Rival 
et  al21 which observed high percentage of saturated fatty 
acids and MUFAs with low concentrations of plasma phos-
pholipid n-6 and n-3 PUFAs in patients with septic shock. 
Barros et al50 observed altered FA profiles in plasma PC in 
critically ill patients, mostly diagnosed with sepsis and sep-
tic shock, compared with healthy elderly subjects. Surviving 

ICU patients displayed higher levels of docosahexaenoic 
acid and total n-3 PUFA and a lower n-6/n-3 PUFA ratio in 
plasma PC than nonsurvivors.

Conclusions
A total of 29 potential biomarkers for sepsis and septic shock 
have been identified via ESI-MS (q-ToF) lipid profile screen-
ing. Most contrasting lipids were from the phosphosphin-
golipids and glycerophosphocholine classes which were 
observed in all samples with significant variations in abun-
dances between septic patients and healthy controls. Septic 
patients also displayed erythrocyte membranes characterized 
by higher levels of oleic acid and lower levels of n-6 PUFA, 
hence with reduced unsaturation indexes. Combined with the 
above analysis, we believe that lyso-PC (16:0) and SM may 
both be involved in the pathogenesis of sepsis and hope that 
they can be developed as sensitive and specific diagnostic bio-
markers candidates of sepsis, which require confirmation in 
further functional studies and large-sample validation. We 
have confirmed the metabolic alterations of some functional 
lipids that may support the understanding of the pathogenesis 
of sepsis. A limiting factor in this study is the small number of 
research subjects, and more studies are needed for more robust 
conclusions. In this study, other groups of patients, such as 
those with inflammatory process without organ dysfunction, 

Table 3.  FA composition of the erythrocyte phospholipids of both septic patients and healthy volunteers (% relative of total FA).

Septic patients Healthy volunteers

Palmitic acid (C16:0) 31.25 ± 1.15 29.96 ± 1.23

Stearic acid (C18:0) 17.27 ± 1.33 16.68 ± 1.09

Total SFAs 48.52 ± 1.64 46.64 ± 1.45

Palmitoleic acid (C16:1 n-7) 2.03 ± 0.38 2.51 ± 0.84

Oleic acid (C18:1 n-9) 18.58 ± 0.84* 15.41 ± 1.05

Total MUFAs 20.61 ± 0.86* 17.92 ± 1.14

Linoleic acid (C18:2 n-6) 13.35 ± 2.59 15.14 ± 1.44

Arachidonic acid (C20:4 n-6) 13.20 ± 1.98 13.52 ± 1.87

Total n-6 PUFAs 26.54 ± 2.10 28.66 ± 1.63

Linolenic acid (C18:3 n-3) 0.57 ± 0.07 0.44 ± 0.13

Eicosapentaenoic acid (C20:5 n-3) 0.72 ± 0.23 1.02 ± 0.44

Docosapentaenoic acid (C22:5 n-3) 1.67 ± 0.28* 2.57 ± 0.38

Docosahexaenoic acid (C22:6 n-3) 1.42 ± 0.16* 2.83 ± 0.21

Total n-3 PUFAs 4.38 ± 0.72* 6.87 ± 0.74

n-6 PUFAs/n-3 PUFAs 6.05 ± 1.83 4.19 ± 2.05

MUFA/n-6 PUFAs 0.77 ± 0.23 0.62 ± 0.12

Unsaturation index 122 154

Abbreviations: MUFA, monounsaturated fatty acids; n-3 PUFA, n-3 polyunsaturated fatty acids; n-6 PUFA, n-6 polyunsaturated fatty acids; SFA, saturated fatty acid.
*P < .05 compared with healthy volunteers (Tukey test).

Figure 9.  Percentages of different subclasses of fatty acids in the 

erythrocyte phospholipid fraction. MUFA indicates monounsaturated fatty 

acids; n-3 PUFA, n-3 polyunsaturated fatty acids; n-6 PUFA, n-6 

polyunsaturated fatty acids; SFA, saturated fatty acid. *P < .05 compared 

with healthy volunteers (Tukey test).
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were not evaluated. Possibly, the combinations of lipidome 
profile with others pro- and anti-inflammatory biomarkers in 
a multimarker panel may help identify patients who are devel-
oping sepsis before organ dysfunction has advanced too far. 
Such knowledge is crucial due to the high severity and mortal-
ity of this disease and may help to in the design of clinical 
diagnosis, sepsis monitoring, and therapy.

Acknowledgements
The authors thank FAPESP, for financial support, the col-
leagues, and students of the Unidade Integrada de Farmacologia 
e Gastroenterologia (UNIFAG) and Laboratório de Análises 
Clínicas São José from Hospital Universitário São Francisco na 
Providência de Deus, Bragança Paulista, SP.

Author Contributions
GCM and POC: conception and design of research. GCM, 
MCFM, RMSP, CFFA and IBSC participated in acquisition, 
analysis and interpretation of data. CFFA, MNE and POC 
drafted manuscript. All authors read and approved final version 
of manuscript

Availability of Data and Materials
All data are available in this manuscript.

Ethical Approval and Consent to Participate
This study has been approved by the Ethics Committee of the 
São Francisco University (CAEE 51356315.5.0000.5514). 
Written informed consent was obtained from the persons 
legally responsible for the patients according to the Declaration 
of Helsinki.

References
	 1.	 Singer M, Deutschman CS, Seymour CW, et al. The third international con-

sensus definitions for sepsis and septic shock (Sepsis-3). JAMA. 2016;315: 
801–810.

	 2.	 Fleischmann C, Scherag A, Adhikari NKJ, et al. Assessment of global incidence 
and mortality of hospital-treated sepsis. Current estimates and limitations. Am J 
Respir Crit Care Med. 2016;193:259–272.

	 3.	 Dias FS, Eidt M, Duquia RP, et al. Clinical factors associated with mortality in 
septic shock. Crit Care. 2007;11:P20.

	 4.	 Silva E, Pedro MA, Sogayar ACB, et al. Brazilian Sepsis Epidemiological Study 
(BASES study). Crit Care. 2004;8:R251–R260.

	 5.	 Sales Júnior JAL, David CM, Hatum R, et al. Sepse Brasil: estudo epidemi-
ológico da sepse em unidades de terapia intensiva brasileiras [An epidemiological 
study of sepsis in intensive care units. Sepsis Brazil Study]. Rev Bras Ter Inten-
siva. 2006;18:9–17.

	 6.	 Brandt S, et al. The role of hypoxia and inflammation in the expression and  
regulation of proteins regulating iron metabolism. In: Vincent JL, ed. Yearbook 
of intensive care and emergency medicine 2008. Berlin: Springer-Verlag 
2008;473–480.

	 7.	 Forceville, X, Van Antwerpen, P. Selenocompounds and selenium: a biochemical 
approach to sepsis. In: Vincent, JL, ed. Yearbook in Intensive Care and Emergency 
Medicine. Berlin, Germany: Springer-Verlag. 2008;454–466.

	 8.	 Kumar A, Roberts D, Wood KE, et al. Duration of hypotension before initiation 
of effective antimicrobial therapy is the critical determinant of survival in human 
septic shock. Crit Care Med. 2006;34:1589–1596.

	 9.	 Livermore DM. Minimising antibiotic resistance. Lancet Infect Dis. 
2005;5:450–459.

	10.	 Vadas P. Elevated plasma phospholipase A2 levels: correlation with the hemody-
namic and pulmonary changes in gram-negative septic shock. J Lab Clin Med. 
1984;104:873–881.

	11.	 Vadas P, Scott K, Smith G, et al. Serum phospholipase A2 enzyme activity and 
immunoreactivity in a prospective analysis of patients with septic shock. Life Sci. 
1992;50:807–811.

	12.	 Sorensen J, Kald B, Tagesson C, Lindahl M. Platelet-activating factor and phos-
pholipase A2 in patients with septic shock and trauma. Intensive Care Med. 
1994;20:555–561.

	13.	 Gijón M, Pérez C, Méndez E,  Sánchez Crespo M. Phospholipase A2 from 
plasma of patients with septic shock is associated with high-density lipoproteins 
and C3 anaphylatoxin: some implications for its functional role. Biochem J. 
1995;306:167–175.

	14.	 Guidet B, Piot O, Masliah J, et al. Secretory non-pancreatic phopholipase A2 in 
severe sepsis: relation to endotoxin, cytokines and thromboxane B2. Infection. 
1996;24:103–108.

	15.	 Grönroos JO, Laine VJO, Nevalainen TJ. Bactericidal group IIA phospholipase 
A2 in serum of patients with bacterial infections. J Infect Dis. 
2002;185:1767–1772.

	16.	 Dinkla S, Van Ejik LT, Fuchs B, et al. Inflammation-associated changes in lipid 
composition and the organization of the erythrocyte membrane. BBA Clin. 
2016;5:186–192.

	17.	 Calder PC, Jensen GL, Koletzko BV, Singer P, Wanten GJA. Lipid emulsions in 
parenteral nutrition of intensive care patients: current thinking and future direc-
tions. Intensive Care Med. 2010;36:735–749.

	18.	 Nogueira AC, Kawabata V, Biselli P, et al. Changes in plasma free fatty acid lev-
els in septic patients are associated with cardiac damage and reduction in heart 
rate variability. Shock. 2008;29:342–348.

	19.	 Idrovo JP, Yang WL, Jacob A, et al. Inhibition of lipogenesis reduces inflamma-
tion and organ injury in sepsis. J Surg Res. 2015;200:242–249.

	20.	 Bruegel M, Ludwig U, Kleinhempel A, et al. Sepsis-associated changes of the 
arachidonic acid metabolism and their diagnostic potential in septic patients. 
Crit Care Med. 2012;40:1478–1486.

	21.	 Rival T, Cinq-Frais C, Silva-Sifontes S, et al. Alteration of plasma phospho-
lipid fatty acid profile in patients with septic shock. Biochimie. 2013;95: 
2177–2181.

	22.	 Drobnik W, Liebisch G, Audebert FX, et al. Plasma ceramide and lysophospha-
tidylcholine inversely correlate with mortality in sepsis patients. J Lipid Res. 
2003;44:754–761.

	23.	 Lang KS, Myssina S, Brand V, et al. Involvement of ceramide in hyperos-
motic shock-induced death of erythrocytes. Cell Death Differ. 2004;11: 
231–243.

	24.	 Kamisoglu K, Sleight KE, Calvano SE, Coyle SM, Corbert SA, Androulakis JP. 
Temporal metabolic profiling of plasma during endotoxemia in humans. Shock. 
2013;40:519–526.

	25.	 Pierrakos C, Vincent JL. Sepsis biomarkers: a review. Crit Care. 2010;14:R15.
	26.	 Jannetto PJ, Fitzgerald RL. Effective use of mass spectrometry in the clinical 

laboratory. Clin Chem. 2016;62:92–98.
	27.	 Folch J, Lees M, Stanley GHS. A simple method for the isolation and purifica-

tion of total lipids from animal tissues. J Biol Chem. 1957;226:497–509.
	28.	 Fisk HL, West AL, Childs CE, Burdge GC, Calder PC. The use of gas chroma-

tography to analyze compositional changes of fatty acids in rat liver tissue during 
pregnancy. J Vis Exp. 2014;85:1–10.

	29.	 Firestone D. Official Methods and Recommended Practices of the American Oil 
Chemists’ Society. 4th ed. AOCS Press: Champaign, IL; 1994.

	30.	 Casadei BR, Carvalho PO, Riske KA, Barbosa RM, De Paula E, Domingues 
CC. Brij detergents reveal new aspects of membrane microdomain in erythro-
cytes. Mol Membr Biol. 2014;31:195–205.

	31.	 Sevastou I, Kaffe E, Mouratis M-A, Aidinis V. Lysoglycerophospholipids in 
chronic inflammatory disorders: the PLA(2)/LPC and ATX/LPA axes. Biochim 
Biophys Acta. 2013;1831:42–60.

	32.	 Block RC, Duff R, Lawrence P, et al. The effects of EPA, DHA, and aspirin 
ingestion on plasma lysophospholipids and autotaxin. Prostaglandins Leukot 
Essent Fatty Acids. 2010;82:87–95.

	33.	 Yan J-J, Jung J-S, Lee J-E, et al. Therapeutic effects of lysophosphatidylcholine in 
experimental sepsis. Nat Med. 2004;10:161–167.

	34.	 Park DW, Kwak DS, Park YY, et al. Impact of serial measurements of lysophos-
phatidylcholine on 28-day mortality prediction in patients admitted to the inten-
sive care unit with severe sepsis or septic shock. J Crit Care. 2014;29:882.
e5-882.e11.

	35.	 Umezu-Goto M, Kishi Y, Taira A, et al. Autotaxin has lysophospholipase D 
activity leading to tumor cell growth and motility by lysophosphatidic acid pro-
duction. J Cell Biol. 2002;158:227–233.

	36.	 Fan H, Zingarelli B. Lysophosphatidic acid inhibits bacterial endotoxin-induced 
pro-inflammatory response: potential anti-inflammatory signaling pathways. 
Mol Med. 2008;14:422–428.

	37.	 Gierse J, Thorarensen A, Beltey K, et al. A novel autotaxin inhibitor reduces lyso-
phosphatidic acid levels in plasma and the site of inflammation. J Pharmacol Exp 
Ther. 2010;2:310–317.



Mecatti et al	 13

	38.	 Hausmann J, Kamtekar S, Chrisdtodoulou E, et al. Structural basis of substrate 
discrimination and integrin binding by autotaxin. Nat Struct Mol Biol. 
2011;18:198–204.

	39.	 Nishimasu H, Okudaira S, Hama K, et al. Crystal structure of autotaxin and 
insight into GPCR activation by lipid mediators. Nat Struct Mol Biol. 
2011;18:205–212.

	40.	 Schmerler D, Neugebauer S, Ludewig K, Bremer-Streck S, Brunkhorst FM, 
Kiehntopf M. Targeted metabolomics for discrimination of systemic inflamma-
tory disorders in critically ill patients. J Lipid Res. 2012;53:1369–1375.

	41.	 Goi FM, Alonso A. Sphingomyelinases: enzymology and membrane activity. 
FEBS Lett. 2002;531:38–46.

	42.	 Lang F, Gulbins E, Lang PA, Zappulla D, Föller M. Ceramide in suicidal death 
of erythrocytes. Cell Physiol Biochem. 2010;26:21–28.

	43.	 Dinkla S, Wessels K, Werdurmen WPR, et al. Functional consequences of 
sphingomyelinase-induced changes in erythrocyte membrane structure. Cell 
Death Dis. 2012;3:e410.

	44.	 Calder PC. Omega-3 fatty acids and inflammatory processes. Nutrients. 
2010;2:355–374.

	45.	 Mauvoisin D, Mounier C. Hormonal and nutritional regulation of SCD1 gene 
expression. Biochimie. 2011;93:78–86.

	46.	 Martinez A, Chioreki R, Bollman M, et al. Assessment of adipose tissue metab-
olism by means of subcutaneous microdialysis in patients with sepsis or circula-
tory failure. Clin Physiol Funct Imaging. 2003;23:286–292.

	47.	 Maitra U, Chang S, Singh N, Li L. Molecular mechanism underlying the sup-
pression of lipid oxidation during endotoxemia. Mol Immunol. 2009;47: 
420–425.

	48.	 Gonçalves-de-Albuquerque CF, Medeiros-de-Moraes IM, De Oliveira FM, 
et al. Omega-9 oleic acid induces fatty acid oxidation and decreases organ dys-
function and mortality in experimental sepsis. PLoS ONE. 2016;11:e0153607.

	49.	 Serhan CN, Gotlinger K, Hong S, Arita M. Resolvins, docosatrienes, and neu-
roprotectins, novel omega-3-derived mediators, and their aspirin-triggered 
endogenous epimers: an overview of their protective roles in catabasis. Prosta-
glandins Other Lipid Mediat. 2004;73:155–172.

	50.	 Barros KV, Paula A, Schalch L, et al. Supplemental intravenous n-3 fatty acids 
and n-3 fatty acid status and outcome in critically ill elderly patients in the ICU 
receiving enteral nutrition. Clin Nutr. 2013;32:599–605.



38 

 

 

3.3 CAPÍTULO III 

 

MECATTI GC, SÁNCHEZ-VINCES S, FERNANDES AMAP, MESSIAS MCF, DE 

SANTIS GKD, PORCARI AM, MARSON FAL, CARVALHO PO. Potential Lipid 

Signatures for Diagnosis and Prognosis of Sepsis and Systemic Inflammatory Response 

Syndrome. Metabolites, v. 10, p. 359 - 376, 2020. doi:10.3390/metabo10090359. 

 

O artigo descreve a assinatura lipidômica e a identificação de potenciais moléculas 

capazes de diferenciar pacientes com sepse daqueles com Síndrome da Resposta Inflamatória 

Sistêmica (SIRS). O sangue (plasma) de 21 pacientes com sepse e 21 com SRIS foi avaliado 

por cromatografia líquida acoplada à espectrometria de massas (CL-EM) usando análise 

multivariada de dados e medida de predição (Random Forest). O estudo foi aprovado pelo 

Comitê de Ética da Universidade de São Francisco (CAEE 51356315.5.0000.5514). A 

análise lipidômica foi capaz de promover com êxito a identificação da infecção nos pacientes 

com sepse os quais mostraram aumento nos níveis plasmáticos de glicerofosfolipídeos, 

ceramidas e em especial, derivados de carnitina metabólitos de desregulação da beta-

oxidação mitocondrial de ácidos graxos. L-Octanoilcarnitina (upregulation) e ésteres de 

ácidos graxos ramificados de ácidos graxos hidroxilados (FAHFA 36:4) (dowregulation) 

são apontados como potenciais biomarcadores para diferenciar sepse de SIRS. A importância 

da L-Octanoilcarnitina foi confirmada para predizer o risco de óbito nos pacientes. Os 

resultados apontam que essas moléculas poderão ser usadas para corroborar no diagnóstico 

e prognóstico da sepse.  
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Abstract: Systemic inflammatory response syndrome (SIRS) and sepsis are two conditions which
are difficult to differentiate clinically and which are strongly impacted for prompt intervention.
This study identified potential lipid signatures that are able to differentiate SIRS from sepsis and to
predict prognosis. Forty-two patients, including 21 patients with sepsis and 21 patients with SIRS,
were involved in the study. Liquid chromatography coupled to mass spectrometry and multivariate
statistical methods were used to determine lipids present in patient plasma. The obtained lipid
signatures revealed 355 features for the negative ion mode and 297 for the positive ion mode, which
were relevant for differential diagnosis of sepsis and SIRS. These lipids were also tested as prognosis
predictors. Lastly, L-octanoylcarnitine was found to be the most promising lipid signature for both the
diagnosis and prognosis of critically ill patients, with accuracies of 75% for both purposes. In short,
we presented the determination of lipid signatures as a potential tool for differential diagnosis of
sepsis and SIRS and prognosis of these patients.

Keywords: sepsis; SIRS; lipidomics; multivariate analysis

1. Introduction

The definition of sepsis, as introduced in 2016, updated several concepts and brought some new
ones. Now, sepsis is defined as a life-threatening organ dysfunction caused by a dysregulated host
response to infection that includes immune as well as nonimmune responses [1]. All over the world,
nearly 6 million people die of sepsis annually [2]. Systemic inflammatory response syndrome (SIRS) is
a condition in which the patient presents two of the following signs: tachycardia, fever or hypothermia,
leukocytosis or leukopenia and tachypnea. It may also occur in response to various forms of aggression
such as infection, trauma or surgery. Almost all septic patients have SIRS, but not all SIRS patients are
septic. As an exception to this theory, it has been suggested that there are subgroups of hospitalized
elderly patients who do not meet criteria for SIRS on presentation but progress to severe infection and
multiple organ dysfunction and death. For this reason, SIRS could be an element of confusion for the
diagnosis, management plan or evolution assessment and, eventually, patient prognosis prediction [3].
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An insufficient ability to predict sepsis prognosis continues to be an important issue, despite
the increasing use of clinical tools [4], severity scores (e.g., the Acute Physiology and Chronic Health
Evaluation II (APACHE II) [5], the Simplified Acute Physiology Score III (SAPS III) [6], Sequential Organ
Failure Assessment (SOFA), qSOFA (quick SOFA)) and biomarkers (e.g., procalcitonin (PCT), presepsin
and C-reactive protein (CRP) [7]). Since sepsis has a clinical diagnosis of great biological complexity,
not much progress has been made towards an effective predictive approach to sepsis in terms of specific
diagnosis or prognosis [8]. The characterization of molecular mechanisms of events associated with
sepsis, such as organ failure, treatment response evolution and death, are also not well understood [9].

SIRS suffers from a lack of precision in defining the factors that produce a disease (infectious
or not), its evolution and the patient’s outcome [1]. Satisfying the two minimum criteria for a SIRS
diagnosis is relatively common in some infectious or non-infectious diseases (i.e., pancreatitis or
trauma) [10]. However, the importance of assessing the presence of these factors has generated different
results and, at the very least, they are intriguing due to the evident selectivity in terms of when and
where they are most useful [11].

Recent omics techniques have facilitated high-throughput profiling of pathology-related signatures
and biomarkers in biological fluids [12]. Lipidomics is one of the most recent, rapidly developing and
promising approaches [13]. Lipidomics studies the state of the lipid molecular phenotype, reflecting
the functional “landscape” of lipid activity in cells and tissues [14]. For this reason, clinical lipidomics
offers the possibility of elucidating the strategic roles of lipids in disease and the immune system [15],
identifying biomarkers and developing new therapeutics [16]. Recent studies have shown the potential
diagnostic [17] and prognostic [18] roles of lipidomics in sepsis patients. Some promising results
from the existing literature have evaluated differences between control and sepsis patients [17,19]
and between patients who survived sepsis and those who did not [20]. A less frequent comparison
covers the difference between sepsis and SIRS by evaluating the potential for the diagnosis or prognosis
of either [20,21]. The terms outcome and prognosis have been used here as if they were synonyms and
are understood to be the final survival report of each patient [22].

In this prospective study, the lipid profiles obtained from plasma samples of patients diagnosed
with sepsis were compared with patients diagnosed with non-septic SIRS in order to identify
sepsis-specific biomarkers. These lipids with potential for differential diagnosis were assessed
as prognostic biomarkers and their putative biological roles were summarized.

2. Results

2.1. Subject and Clinical Data

Table 1 shows a statistical comparison of the two groups for the baseline characteristics of the
participants involved in this study. No significant differences were found between the demographic
characteristics of the groups. Other prognostic scores did not present a statistically significant difference.
Almost no comorbidities were present in the SIRS group; this can be explained by the epidemiological
characteristics of this group of patients as they were almost all victims of poly-trauma. A higher
frequency of comorbidities is expected in patients in the sepsis group [23], leading to a statistically
significant difference for systemic hypertension and for diabetes mellitus. The other comorbidities
were less frequent in our patients with sepsis, so there were no statistically significant differences, even
in the absence of the comorbidities in the SIRS group. No significant differences were found in the
frequency of organ dysfunctions between the groups, since both diagnoses can lead to the occurrence
of these dysfunctions. None of these variables had a statistically significant effect on the multiple
linear regression model for diagnostic classification (Supplementary Table S3). All of the non-survivor
patients in the study died during their intensive care unit (ICU) stay.
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Table 1. Baseline characteristics of the study population.

Sepsis SIRS Sepsis vs. SIRS

N Mean SD N Mean SD p-Value

Age 21 55.52 19.79 21 48.00 17.44 0.20
BMI 21 25.10 4.92 21 24.96 3.49 0.92

SAPSIII 21 56.95 17.17 21 53.05 14.72 0.43
Risk of death (%) 21 38.33 29.39 21 29.03 24.01 0.27

SOFA score 21 5.14 2.95 21 6.43 3.11 0.18

Comorbidities

Systemic hypertension 7 0.33 - 1 0.05 - 0.05
Diabetes mellitus 5 0.24 - 0 0.00 - 0.05

Dyslipidemia 0 0.00 - 0 0.00 - 1.00
Coronary insufficiency 1 0.48 - 0 0.00 - 1.00

COPD 4 0.19 - 0 0.00 - 0.11
Neoplasm 3 0.14 - 0 0.00 - 0.23

Organ dysfunction

by patient 21 2.05 - 21 2.05 - 0.82
AP < 90 mmHg 10 0.48 - 16 0.76 - 0.11

Lactate > 20 mg/dL 11 0.52 - 13 0.62 - 0.76
AKI 5 0.24 - 6 0.29 - 1.00

Total bilirubin > 2 mg/dL 3 0.14 - 1 0.05 - 0.61
INR > 1.6 8 0.38 - 1 0.05 - 0.02

Platelets < 150,000/mm3 1 0.05 - 4 19.05 - 0.34
PaO2/FiO2 ratio < 300 5 0.24 - 1 4.76 - 0.18

Site of infection

Pneumonia 7 0.33 - - - - -
Abdominal 9 0.43 - - - - -

UTI 1 0.05 - - - - -
Others 4 0.19 - - - - -

Outcome (death)

ICU length of stay 21 7.91 5.99 21 10.81 6.90 0.15
Total outcome 7 0.33 - 7 0.33 - 1.00

N: number of patients measured for each characteristic; Mean: average value for quantitative characteristics and
proportion value for qualitative; SD: standard deviation; SIRS: systemic inflammatory response syndrome; BMI: body
mass index; SAPSIII: Simplified Acute Physiology Score; SOFA: Sequential Organ Failure Assessment; COPD: chronic
obstructive pulmonary disease; AP: arterial pressure; mmHg: millimeters of mercury; mg/dL: milligrams per
deciliter; mm3: cubic millimeter; AKI: acute kidney injury; INR: international normalized ratio; FIO2: fraction of
inspired oxygen; PaO2: partial pressure of oxygen; UTI: urinary tract infection. ICU: intensive care unit.

2.2. Analysis of Plasma Samples

In this study, 42 samples were assessed: 21 plasma samples from male patients diagnosed with
sepsis and 21 plasma samples from male patients diagnosed with SIRS. After applying quality control
(QC) and non-QC filters and making corrections, final numbers of 733 features for negative ion mode
and 1703 features for positive ion mode were obtained. The obtained lipidome data were assessed
using principal component analysis (PCA) for both negative (Figure 1A) and positive ionization modes
(Figure 1B). In negative mode, both groups presented very close individual profiles which impeded
complete separation of groups. In positive mode, there is a total overlap of the groups. Supplementary
Figure S1 shows PCA for samples and QC, where high-quality data depict QC samples in clusters
tighter than those observed for biological samples [24].
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Figure 1. Principal component analysis (PCA) score plot between the first 2 principal components
(PC) for negative ionization mode (A) and positive ionization mode (B). Areas of 95% confidence are
highlighted in red and green. Variance explanation (%) for each PC is indicated.

Other descriptive analyses, such as volcano plot and heatmap of clustered intensities, were
performed for all the features. The results are represented in Figure 2 for both negative and positive
modes. These descriptive results show that, despite the difficulty in differentiating groups by PCA,
it is still possible to determine features with differential abundances.

2.2.1. Analysis of Lipid Signatures for Diagnosis

In order to identify the most relevant features in the task of correctly classifying the samples by
diagnosis (sepsis or SIRS), a selection of the lipid signatures was made with prediction models using
the random forest (RF) method implemented in MetaboanalystR. The final model for the negative
mode (accuracy = 84.7%, area under the curve (AUC) = 0.935) selected 355 features as relevant.
The final model for the positive mode (accuracy = 75.7%, AUC = 0.868) selected 297 features as relevant.
Receiver Operating Characteristic (ROC) curves for these models are provided as Supplementary
Figures S2 and S3.

Matching the obtained list of features from the RF model for negative and positive mode with
Lipidmaps and Human Metabolome DataBase (HMDB) databases resulted in the annotation of 33
significant features as possible biomarkers for discriminant diagnosis between sepsis and SIRS (Table 2).
Annotated lipids such as L-palmitoylcarnitine, gamma-linolenyl carnitine, linoleyl carnitine and
the omega 6 polyunsaturated fatty acid arachidonic acid were found in higher abundance in the
sepsis patient’s plasma and were significant contributors to differentiation among sepsis and SIRS.
The predictive importance of these putatively identified lipids was evaluated in subsequent analyses.
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Figure 2. Volcano plot of features for negative ionization mode (A) and positive ionization mode (C).
Heat map of clustered differential features and samples for negative mode (B) and positive mode
(D). In the volcano plot, highlighted features with adjusted p-value of 0.05 and log (fold change) of 1.
Heatmap depicts top 50 features with lowest adjusted p-values.

Table 2. Relevant ions selected by random forest (RF) models (positive and negative ion mode) to the
diagnostic classification of plasma from sepsis and SIRS diagnosed patients.

Measured
m/z

Ion
Mode Adducts Lipid Assignment Proposed

Formula
Mass Error

(ppm)
Abundance

Sepsis
Abundance

SIRS

129.0555 - M-H2O-H [1−] Mevalonic acid a C6H12O4 −1.69 1385.62
(722.52)

1277.46
(743.76)

132.0657 + M+H [1+] 2-amino-4-oxopentanoic acid a C5H9NO3 1.51 991.28
(466.89)

1013.26
(580.62)

133.0854 + M+H [1+] 6-hydroxyhexanoic acid a C6H12O3 −3.76 679.72
(866.08)

782.53
(914.21)

238.1169 + M+H [1+] S-aminomethyldihydrolipoamide a C9H20N2OS2 0.39 1114.93
(320.52)

1135.13
(536.29)

282.1251 - M−2H [2−] Leukotriene F4 b C28H44N2O8S −2.54 1154.50
(1659.83)

1066.37
(662.07)

288.2181 + M+H [1+] L-octanoylcarnitine b C15H29NO4 4.16 1452.21
(1113.79)

659.59
(430.61)

293.2119 - M−H2O-H [1−] 13-L-hydroperoxylinoleic acid b C18H32O4 −1.08 891.92
(644.89)

751.29
(539.68)

295.2277 - M−H [1−] 13S-hydroxyoctadecadienoic acid b C18H32O3 −0.68 909.30
(645.14)

492.81
(355.81)
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Table 2. Cont.

Measured
m/z

Ion
Mode Adducts Lipid Assignment Proposed

Formula
Mass Error

(ppm)
Abundance

Sepsis
Abundance

SIRS

303.2333 - M−H [1−] Arachidonic acid b C20H32O2 0.99 817.75
(713.45)

1104.24
(653.40)

326.2670 + M+H−H2O [+1] N-palmitoyl serine a C19H37NO4 −5.64 2286.56
(4267.87)

3535.59
(5678.59)

327.2332 - M−H [1−] Docosahexaenoic acid a C22H32O2 0.61 812.39
(508.09)

780.96
(365.68)

331.2280 + M+H [1+] 17-hydroxyprogesterone b C21H30O3 3.62 1142.74
(400.95)

1133.59
(530.18)

335.2218 + M+H [1+] PGE2 1,15-lactone a C20H30O4 0.30 709.67
(263.66)

561.39
(187.29)

353.2326 + M+H [+1] Prostaglandin E2 b C20H32O5 1.13 1405.19
(1305.15)

698.16
(637.36)

367.1578 - M−H [1−] Dehydroepiandrosterone sulfate b C19H28O5S −1.90 614.23
(463.79)

2599.17
(1954.71)

397.2051 - M−H2O-H [−1]
7-[(2,4,6-trihydroxy-2,5,5,8a-tetramethyl-
decahydronaphthalen-1-yl)methoxy]-2H-

chromen-2-one a
C24H32O6 7.28 436.61

(267.23)
1948.12

(1895.83)

400.3438 + M+H [1+] L-palmitoylcarnitine b C23H45NO4 4.25 1275.23
(1117.99)

684.14
(547.16)

422.3260 + M+H [1+] Gamma-linolenyl carnitine a C25H43NO4 −1.18 994.63
(388.35)

832.62
(254.73)

424.3432 + M+H [1+] Linoleyl carnitine b C25H45NO4 2.59 1087.23
(1266.79)

598.35
(520.68)

426.3589 + M+ACN+H [+1] Tetrahydropersin a C23H44O4 2.89 1146.89
(1099.49)

568.64
(508.05)

464.3016 - M-H [1−] Glycocholic acid a C26H43NO6 −0.43 1506.15
(4407.32)

639.15
(1149.97)

477.2132 + M+H [1+] 2-methoxyestrone 3-glucuronide a C25H32O9 2.72 1057.75
(267.34)

1088.04
(224.43)

510.3940 + M+H [1+] LysoPC (O-18:0) b C8H20NO6PR 4.31 932.19
(572.29)

776.95
(514.12)

557.4584 − M−H [−1] FAHFA 36:4 a C36H62O4 1.62 760.47
(665.67)

1528.53
(1306.92)

582.5110 − M+FA−H [−1] Cer (d16:1/18:0) a C34H67NO3 1.38 1931.34
(2267.96)

593.15
(508.32)

610.5423 − M+FA−H [−1] Cer (d36:1) a C36H71NO3 1.32 1497.42
(786.64)

707.04
(471.59)

753.5293 − M+FA−H [−1] PG (O−32:0) a C38H77O9P 0.87 1374.76
(687.85)

458.97
(455.32)

760.5590 − M+FA−H [−1] AS 1-5 a C40H77NO9 1.34 1273.41
(530.64)

489.87
(320.17)

762.5650 − M−H [−1] PS (O−35:0) a C41H82NO9P −0.64 1541.92
(1105.94)

674.73
(559.37)

834.5294 − M−H [1−] PS (16:0/16:0) b C38H74NO10P −0.41 1351.20
(525.54)

733.77
(538.39)

856.5141 − M+Na−2H [−1] PS (40:6) b C46H78NO10P 3.69 1575.69
(1472.24)

463.90
(483.53)

908.6356 − M+Na−2H [−1] PS (43:1) b C49H94NO10P −0.63 1575.01
(1318.04)

1016.98
(1203.54)

932.6353 − M+FA−H [−1] PC (44:7) a C52H90NO8P −3.75 1854.09
(1614.94)

621.01
(482.13)

m/z: mass-to-charge ratio; LysoPC: Lysophosphatidylcholine; PC: phosphatidylcholine; PG: phosphatidylglycerol;
PGE2: prostaglandin E2; FAHFA: branched fatty acid esters of hydroxy fatty acids. Corrected abundance expressed
as mean (standard deviation); a: Level 2 and b: Level 3 of annotation (see Methods).

Figure 3 shows the metabolic pathways most associated with the lipids found to be relevant.
A large impact on the pathway is related to the importance of the compound within the metabolic
network evaluated; a higher log (p) (or lower p-value) indicates the over-representation of the evaluated
pathway in relation to the list of compounds consulted. Only 22 compounds were found in the HMDB
database. Supplementary Table S2 shows information on the matched lipids and statistics of the
enriched pathways.
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2.2.2. Performance Evaluation of Diagnostic Lipid Signatures Used for Prognostic Prediction

With a more reduced but significant list of features, random forest for multivariate classification
was used to assess features′ performances as possible signatures for prognostic classification (Figure 4).
This model had an average accuracy of 61.3% and an AUC = 0.676 (see Supplementary Figure S4).
Supplementary Table S1 provides a complete list of ranked scores. Although this model presents low
accuracy due to the small number of features selected for prognostic classification, its results enabled
the identification of the most relevant features for further analysis.
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2.2.3. Performance Evaluation of L-Octanoylcarnitine as Diagnostic and Prognostic Predictor

The lipid L-Octanoylcarnitine was found to be the most relevant for the prognostic classification
(samples from patients who survived and died), with a notable difference in importance in relation
to the other lipids. To evaluate its individual importance in diagnostic and prognostic classification,
classification prediction models were used based on random forest. To build the classification models,
eight samples were randomly selected and unlabeled (four from each group for each classification)
to define a validation group. As a diagnostic signature (Figure 5A), L-octanoylcarnitine obtained
an AUC = 0.89, an average accuracy based on 100 cross-validations of 0.848 and accuracy for
validation data prediction of 0.75 (6/8), one mismatch per class. As a prognostic signature (Figure 5B),
L-octanoylcarnitine obtained an AUC = 0.713, an average accuracy based on 100 cross-validations of
0.658 and accuracy for validation data prediction was 0.75 (6/8), one mismatch per class.Metabolites 2020, 10, x FOR PEER REVIEW  8 of 18 
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Figure 5. Classification performance of L-octanoylcarnitine for diagnosis (A) and prognosis (B). In (A),
the receiver operating characteristic (ROC) curve shows AUC = 0.89 for training/test and ROC AUC
= 0.625 for validation (holdout). (B) For prognostic classification, it shows the receiver operating
characteristic (ROC) curve AUC = 0.713 for training/test and ROC AUC = 0.688 for validation (holdout).

The two-way ANOVA analysis identified seven significant variables for classification by diagnosis
(PS (40:6), PS (16:0/16:0), Cer (d36:1), PG (O-32:0), prostaglandin E2, AS 1-5, dehydroepiandrosterone
sulfate), two for classification by prognosis (arachidonic acid, docosahexaenoic acid) and two relevant
for both classifications: L-octanoylcarnitine and FAHFA 36:4. Figure 6A shows a heatmap of clustered
intensities of these lipids for samples grouped by diagnosis and subgrouped by prognosis. Figure 6B
plots the differences in intensity by each group for the lipids found to be important for both categories.
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Figure 6. (A) Heatmap of standardized intensities of significant lipids obtained by two-way ANOVA.
The upper bars indicate the group to which the samples belong (columns). Lipid clusters on the
left side. (B,D) Boxplot of the 2 most relevant lipids. Boxplot of subgroups (diagnosis + prognosis)
with statistical significance values obtained by ANOVA and Tukey′s test. Boxplots for diagnosis and
prognosis classification for (C) L-octanoylcarnintie and (E) FAHFA 36:4.

3. Discussion

Sepsis, one of the major causes of death in the world, is a serious medical condition associated
with high incidence and mortality rates [25]. The discovery of differentiators of patients with a high
chance of poor outcome should optimize the selection of better treatment strategies. Similarly, early
discrimination between sepsis and some other similar clinical condition, such as SIRS, would make
better decision making possible by preventing the progression of the disease, even before organ
dysfunction. Here, we have shown that the differences in the lipidomes of patients diagnosed with
sepsis or SIRS are relevant for the patients’ prognoses. Although differences in the prognosis of patients
with sepsis or SIRS, detected either by different omic or clinical approaches [1,17,21,26], have been
previously reported; in the present study, we report the co-occurrence of variations in lipid abundance
with diagnostic and prognostic potential.
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Some species of glycosphingolipids (AS 1–5), glycerophospholipids (PS (16:0/16:0), PS (40:6),
PG (O-32:0), PG (O-32:0)), N-acylsphingosines (Cer (d16:1/18:0), Cer (d36:1)), prostaglandins
(prostaglandin E2), lineolic acids (13S-hydroxyoctadecadienoic acid), phosphatidylcholine (PC (44:7))
and acylcarnitines (L-octanoylcarnitine, L-palmitoylcarnitine) were more abundant in the sepsis
diagnosed group when compared with the SIRS group, while some species of sulfated steroid
(dehydroepiandrosterone sulfate,), fatty acid esters of hydroxy fatty acids (FAHFA 36:4), were more
abundant in cases with SIRS when compared with the sepsis cases. When comparing the groups of
survivor and non-survivor patients, no univariate adjusted statistical difference (false discovery rate
(FDR) p < 0.05) was found, but multivariate relevance was found, especially in L-octanoylcarnitine
(more abundant in non-survivor patients) and FAHFA 36:4 (more abundant in survivor patients).
In addition, the last two compounds present interaction between the two groups, with abundances
codependent on prognosis and diagnosis.

Glycosphingolipids (GSLs) are a subclass of sphingolipids with glycans exposed to the extracellular
space. These lipids are abundant components of the cell membrane [27]. GSLs are related to many
biological processes including infections by specific pathogens as binding receptors at the surface
of host cells [28]. GSLs play a role in immune cell function as a signal transducer (i.e., toxins or
IgM antibodies) or in binding lipid rafts to trigger chemotaxis, phagocytosis and phagolysosome
formation [28] and are involved in regulatory aspects of T cell biology [29]. Some clinical uses for GSLs,
such as lipid-rafts for signaling the presence of pathogens, and pharmacological reduction of GSL are
being actively studied [30]. However, so far, there have been no studies that describe or associate AS
1-5, a glycosylated N-acylsphingosine, with immune response, inflammation or infection so far.

Glycerophospholipids or phosphoglycerides are lipids with hydrophobic regions composed
of two fatty acids linked to glycerol. Sphingolipids are lipids with a single fatty acid linked to a
fatty amine, sphingosine. Both lipids are the main components of biological membranes. A wide
variety of these compounds have been reported as differentials in assessing septic mortality [21] or in
differentiating stages of sepsis and SIRS [20]. These compounds present an increase in abundance related
to the severity of sepsis, being more abundant in septic shock and non-differential in non-infectious
SIRS [31]. A confounding factor when analyzing these compounds is the variability of their abundance,
sometimes decreased in sepsis, depending on the type and focus of infection (i.e., decrease in
lysophosphatidylcholines in community-acquired pneumonia) [32]. This high variability has made its
biological interpretation difficult. Interestingly, the compounds of this class identified in our study
have a higher mean abundance in sepsis, although with weak univariate statistics but relevance in
multivariate differentiation. These compounds are largely associated with lipid peroxidation, whose
products may have pro-inflammatory and protective activity against infection [33].

Ceramides play essential roles in cell signaling and contrasting roles within cellular metabolism.
Ceramide is involved in cellular responses related to stress, autophagy and apoptosis, whereas
S1P, another bioactive lipid of the sphingolipid pathway, stimulates cell survival, proliferation
and tissue regeneration [34]. However, it is necessary for further investigation to understand the
effect of different lengths of acyl chains on this lipid class. Again, sphingolipids participate in
the regulation of the phagosome/lysosome fusion, apoptosis or the inflammatory response [35],
facilitating bacterial destruction.

Higher average importance for multivariate model and univariate significance of
L-octanoylcarnitine and L-palmitoylcarnitine were found in the sepsis group and just low average
importance for gamma-linolenyl carnitine and linoleyl carnitine for the same model. The quaternary
ammonium compound carnitine and its acyl esters (acylcarnitines) are essential for the oxidative
catabolism of fatty acids and thence for maintaining energy homeostasis in the human body.
Downregulation of fatty acid oxidation is evidenced by an increased presence of acylcarnitines in
plasma [36]. Their accumulation in the plasma is marked in sepsis non-survivors, indicating a possible
mitochondrial dysfunction in energy production. Moreover, it was reported that non-survivor septic
patients have mitochondrial dysfunction leading to deficient aerobic catabolism [37] and consequently
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elevated plasma concentrations of TCA cycle metabolites. Unused acylcarnitines are reversely
transported to the cytoplasm and then into the plasma [38]. Levels of these lipids were found to be lower
in SIRS and survivor patients, as reported by other studies [20]. In the present study, we looked for a
particular abundance profile for prognostic and diagnostic classifications: L-octanoylcarnitine presented
the highest abundance in non-survivor sepsis patients when compared to survivor SIRS patients
(lowest abundance), non-survivor SIRS and survivor sepsis patients. Its importance was evaluated by
univariate and multivariate prediction methods (Figure 6), with good predictive performance for both
diagnoses and prognoses (Figure 5, which identifies it as a possible lipid signature). This compound is
the physiologically active form of octanoylcarnitine, an intermediate fatty acid b-oxidation byproduct.
In addition to indicating increased lipid oxidation, L-octanoylcarnitine may indicate increased lipid
input [39]. A recent study identified low levels of L-octanoylcarnitine as a biomarker of breast cancer
(100% positive predictive value) against samples from healthy individuals, in addition to presenting
different levels depending on the size of the tumor, as well as high abundance in tumors with high
expression of estrogen and progesterone receptors [40]. This may be related to the high metabolic
demand of the tumor. Another study on prostate cancer showed a positive relationship between
L-octanoylcarnitine levels and the risk of cancer progression in primary and metastatic samples [41].
There is currently no information that relates this acylcarnitine to sepsis, SIRS or the prognosis of these
cases. However, a larger, stratified study covering a wider range of compounds (metabolites and
proteins) is needed to infer the biological basis of their variable abundance in the cases presented here.

FAHFA 36:4 is a compound that presented a different pattern to those mentioned above. This fatty
acid ester of hydroxy fatty acid was found to be more abundant in samples of surviving patients
with SIRS when compared to non-survivors with sepsis (less abundant), survivors with sepsis and
non-survivors with SIRS. These lipids are endogenous products present in food and mammalian
tissues. To date, more than 16 FAHFA families have been determined. Structurally, each family
has different fatty acid and hydroxy fatty acid compositions and multiple isomers by the ester bond
position. These compounds have anti-inflammatory and anti-diabetic effects [42]. Although it is not
known how they perform their biological activity, recent studies link FAHFA to erythroid nuclear factor
2-related factor 2 (Nrf2) [43]. Their presence is related to resolution or regulation of inflammation,
including providing protection against potential infection [44]. Therefore, it is not clear whether the
low abundance in patients with sepsis and in non-survivors is a depletion or a result of some altered
pathway. No studies have been published that relate FAHFA to the progression and outcome of
patients with sepsis or SIRS.

In conclusion, this lipidomics study carried out on plasma taken from male patients with sepsis
or SIRS assessed relevant lipids for diagnosing. Then, identified lipids from the previous step were
assessed as prognostic signatures. Finally, one relevant lipid, L-octanoylcarnitine, was found to be a
promising signature for diagnosis and prognosis. Quantification studies of all relevant metabolites
highlighted by this study and their physiological and altered levels in human plasma seem to be an
interesting matter for further investigation.

4. Materials and Methods

4.1. Study Groups

The study samples came from the Universidade São Francisco (USF) Hospital, Bragança Paulista,
São Paulo, Brazil. Male patients admitted to the ICU were evaluated. The project was approved by
the Research Ethics Committee of the Universidade São Francisco (CAAE:51356315.5.0000.5514) and
was developed at the Intensive Care Unit of Universidade São Francisco Hospital. The following
inclusion criteria were adopted for the group of critically ill patients: individuals from 15 to 90 years of
age admitted to the intensive care unit, either clinical or surgical, in the period. Female patients and
patients receiving special diets were not included in the study to avoid gender-related and diet-related
lipidomic profile bias [45]. Following SIRS definition criteria [46], 21 male patients with 2 or more
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signs of SIRS and no suspected or confirmed infection were selected for inclusion in the SIRS group.
Patients with organ dysfunction and confirmed infection were selected for inclusion in the sepsis
group. Clinical data were collected, including severity score (SAPS III and SOFA on the first day
of hospitalization). Clinical and demographic data are provided in Table 1. Additionally, a logistic
multiple linear regression model was implemented to evaluate the influence of non-lipidomic variables
on the classification (diagnostic) variable.

4.2. Sample Collection, Preparation and LC-MS/MS Analysis

Blood samples were collected for daily laboratory monitoring of critically ill patients and aliquots
of this material from the first 36 h of hospitalization were used to carry out the analyses of the
present study. Labeled ethylenediamine tetraacetic acid (EDTA) blood samples were sent to the
Multidisciplinary Research Laboratory of the USF, where the lipidomic analyses were performed.
Centrifuged plasma samples were frozen at −80 ◦C. A mixture of samples from both groups was used
as quality control (QC). This pooled sample was divided and extracted along with the remaining
samples. CHCl3:MeOH solution (2:1, v/v) was used for extraction with 150 mL of plasma sample.
Extracted samples were then vortexed for 30 s and centrifuged at 12,000× RPM for 5 min at 4 ◦C.
The bottom organic layer (450 mL) was collected. Nitrogen-dried samples were stored at −20 ◦C to
await analysis. A solution of isopropanol (IPA)/acetonitrile (ACN)/water (2:1:1, v/v/v) was used to
reconstitute samples before analysis.

4.2.1. LC-MS Analysis

Following a method previously published by our group [47], untargeted LC-MS analysis was
performed using an ACQUITY UPLC coupled to a XEVO-G2XS QTOF mass spectrometer (Waters,
Manchester, UK). Liquid chromatography was performed using an Acquity UPLC CSHC18 column
(2.1 × 100 mm, 1.7 mm, Waters). The volume of injection was 1 mL. MSE mode was used to separately
record positive and negative ion modes in the range of 50–2000 m/z. The injection order was randomly
defined and QC samples were analyzed after every ten injections.

4.2.2. Data Acquisition and Preprocessing

The peak alignment, deconvolution, selection of possible adducts and compound annotation
based on MSE experiments were obtained using Progenesis QI 2.0 software (Nonlinear Dynamics,
Newcastle, UK). Search parameters for putative annotation were precursor mass error 5 ppm and
fragment tolerance 10 ppm. At this stage, putative identification using LIPID MAPS [48] database and
the Human Metabolome Database (HMDB) [49] was defined by fragmentation score, mass accuracy
and isotope similarity. Annotation of compounds was classified in accordance with the Metabolomics
Standards Initiative (MSI) [50], where ions with some level of match with MS/MS database reached
level 2 while compounds putatively identified by exact mass, using the mummichog algorithm, reached
level 3. Progenesis QI generated a table of ion intensity by sample and ions. Ions were labeled
according to their retention time and mass-to-charge (m/z) ratio. Preprocessed data are available
as Supplementary Materials files: Spreadsheet_1 Sepsis SIRS negative mode, for negative mode;
Spreadsheet_2 Sepsis SIRS positive mode for positive mode.

4.3. Statistical Analysis

MetaboAnalystR 3.0 [51], statTarget2 [52] and Bioconductor package manager using R
programming language [53], were used to perform statistical analyses. Quality control based signal
correction was performed using random forest implementation (QC-RFSC) [54]. According to the
“80% rule” [55], peaks present in more than 80% of the samples of each group were kept for further
analysis. The K-nearest neighbor algorithm was used to impute the remaining missing values.
Further data filtering removed variables with low variance based on the interquartile range (IQR) [56].
Then, the corrected data were log-transformed and normalized using the Pareto scale [57].
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4.3.1. Exploratory Analysis

For univariate descriptive analyses, a volcano plot was used to represent features with
FDR-adjusted p-values < 0.05 using t-test and 2-fold intensity between groups for each m/z.
Principal component analysis (PCA) was used to distinguish sample cluster distribution in the
first two principal components. A heatmap and unsupervised hierarchical clustering of 50 features
with the lowest adjusted p-value < 0.05 depicts differential peaks.

4.3.2. Analysis of Biomarkers for Diagnosis

The biomarker analysis module implemented in the MetaboanalystR package was used on the
MS peak intensities table for all the samples for detecting relevant features for diagnostic classification.
The random forest method, a classification ensemble algorithm, was used for classification and feature
selection models. To construct ROC curves, balanced sub-sampling and Monte Carlo cross-validation
(MCCV) with two thirds (2/3) of the samples for training were used to evaluate feature importance.
The test subgroup (1/3 of samples) was used to build a classification model for top n (1 to 100) important
features. The performance and confidence interval of each model were calculated, repeating the
procedure multiple times. The RF model produces a reduced list of features ranked by value of
importance. All the features obtained here were then used in the annotation stage.

4.3.3. Putative Identification of Lipids and Metabolomics Pathway Analysis

In addition to the putative identification using Progenesis QI described above, the mummichog V2
algorithm [58] was used for MS peaks, without prior annotation. This method identifies lipids based on
mass-to-charge ratios (m/z), p-values, fold change, retention time and mixed analytical mode (positive
and negative ions), which were used to interrogate the KEGG library. Molecular weight tolerance at
5 ppm and a customized adduct list were used. Only lipidic matched compounds with registered
LipidMaps entries were kept. A final manually curated list of identified lipids was obtained using
Progenesis QI putative identification and the mummichog-identified lipid list. Using the identified
compound list, metabolomics pathway analysis (MetPA) was used to identify biological pathway
impact associated with the differences between study groups.

4.3.4. Performance Evaluation of Diagnostic Biomarkers Used for Prognostic Prediction

To assess whether the lipids identified as diagnostic biomarkers could also be predictive for
prognostic classification, these lipids were used to build a random forest predictive model for the
prognosis. The most relevant lipid was further individually evaluated as a diagnostic and prognostic
individual biomarker. For a more stringent evaluation as a possible biomarker, the predictive model
tested a subgroup of unlabeled samples. A random forest model was then trained with the labeled
subgroup of samples for a single compound, thus alleviating the training bias for which it was
initially selected in the diagnostic classification. ANOVA two-way was used for final clustering and
visualization of lipid relevant to both diagnosis and prognosis categories.

Supplementary Materials: The following are available online at http://www.mdpi.com/2218-1989/10/9/359/s1,
Figure S1: PCA with quality controls, Figure S2: Negative mode ROC for diagnosis, Figure S3: Positive mode
ROC for diagnosis, Figure S4: ROC for prognosis, Table S1: Ranked lipids for prognosis, Table S2: Pathway impact
analysis, Table S3: Logistic linear model for all baseline characteristics, Spreadsheet_1: Sepsis_SIRS negative mode,
Spreadsheet_2: Sepsis_SIRS positive mode.
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SIRS systemic inflammatory response syndrome
SOFA sequential organ failure assessment
qSOFA quick SOFA
APACHE evaluation acute physiology and chronic health
PCT procalcitonin
SD standard deviation
BMI body mass index
CRP C-reactive protein
SAPS simplified acute physiology score
COPD chronic obstructive pulmonary disease
AP arterial pressure
AKI acute kidney injury
mmHg millimeters of mercury
mg milligram
dL deciliter
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PaO2 partial pressure of oxygen
FiO2 fraction of inspired oxygen
ICU intensive care unit
UTI urinary tract infection
USF Universidade São Francisco
QC quality control
PCA principal component analysis
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ROC receiver operating characteristic
RF random forest
MSI Metabolomics Standards Initiative
QC-RFSC correction quality control random forest based signal
IQR interquartile range
MCCV Monte Carlo cross-validation
MS mass spectrometry
HMDB Human Metabolome Database
PC phosphatidylcholine
PG phosphatidylglycerol
ANOVA analysis of variance
UPLC ultra performance liquid chromatography
ACN MS data-independent acquisition
MSE n acetonitrile
EDTA ethylenediamine tetraacetic acid
QTOF quadrupole time-of-flight mass spectrometry
FAHFA fatty acid esters of hydroxy fatty acids
TCA tricarboxylic acid cycle
GSL glycosphigolipids
LC-MS liquid chromatography–mass spectrometry
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Figure S1: PCA with quality controls. Spreadsheet_1: Sepsis_SIRS negative mode, Spreadsheet_2: 

Sepsis_SIRS positive mode. 

 

Figure S2: Negative mode ROC for diagnosis   Figure S3: Positive mode ROC for diagnosis 

 

Figure S4: ROC for prognosis  
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Table S1: Ranked lipids for prognosis 

 

 

Rank 
Freq. Importance died survived 

L-Octanoylcarnitine 1 3.513626717 High Low 

2-Methoxyestrone 3-glucuronide 1 1.718238274 High Low 

17-Hydroxyprogesterone 1 1.233574707 Low High 

FAHFA 364 1 1.155257279 High Low 

6-Hydroxyhexanoic acid 1 0.963067176 Low High 

Mevalonic acid 1 0.595508632 High Low 

N-palmitoyl serine 1 0.516400324 High Low 

PGE2 1,15-lactone 1 0.291425156 High Low 

13-L-Hydroperoxylinoleic acid 1 0.234356698 Low High 

Leukotriene F4 1 0.159415145 High Low 

Arachidonic acid 1 0.076876218 High Low 

PS431 1 -0.11000578 Low High 

Dehydroepiandrosterone sulfate 1 -0.11269207 Low High 

AS 1-5 1 -0.12625387 High Low 

Docosahexaenoic acid 1 -0.15022169 High Low 

Glycocholic acid 1 -0.25270521 High Low 

2-Amino-4-oxopentanoic acid 1 -0.26198412 Low High 

LysoPCO-180 1 -0.28352821 High Low 

Linoleyl carnitine 1 -0.30963904 Low High 

Gamma-linolenyl carnitine 1 -0.31811153 High Low 

PGO-320 1 -0.41293186 Low High 

PS406 1 -0.42322095 High Low 

Tetrahydropersin 1 -0.47996744 Low High 

Cerd161/180 1 -0.48994484 High Low 

PS160/160 1 -0.58137871 High Low 

13S-hydroxyoctadecadienoic acid 1 -0.60429275 Low High 

PSO-350 1 -0.64148266 High Low 

L-Palmitoylcarnitine 1 -0.64503568 Low High 

Cerd361 1 -0.68997562 High Low 

S-aminomethyldihydrolipoamide 1 -0.76169645 Low High 

PC 447 1 -0.96686047 Low High 

Prostaglandin E2 1 -1.05037926 High Low 

7-2,4,6-trihydroxy-2,5,5,8a-tetramethyl-
decahydronaphthalen-1-ylmethoxy-2H-
chromen-2-one 1 -1.13911619 High Low 
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Table S2: Pathway impact analysis 

 

 Total Expected Hits Raw p 
-
log(p) 

Holm 
adjust FDR Impact 

Linoleic acid metabolism 5 0.051613 1 0.050622 2.983 1 1 0 

Biosynthesis of unsaturated fatty 
acids 36 0.37161 2 0.051323 2.97 1 1 0 

Arachidonic acid metabolism 36 0.37161 2 0.051323 2.97 1 1 0.3135 

Terpenoid backbone biosynthesis 18 0.18581 1 0.17123 1.765 1 1 0.11429 

Ether lipid metabolism 20 0.20645 1 0.18845 1.669 1 1 0.14458 

Steroid hormone biosynthesis 85 0.87742 2 0.21753 1.525 1 1 0.09615 

Glycerophospholipid metabolism 36 0.37161 1 0.31467 1.156 1 1 0.04701 

Fatty acid degradation 39 0.40258 1 0.33618 1.09 1 1 0 

Primary bile acid biosynthesis 46 0.47484 1 0.38394 0.957 1 1 0.00805 

 

 

 

Table S3: Logistic linear model for all baseline characteristics 

 

 

 Estimate 
Std. 
Error z value Pr(>|z|) 

(Intercept) 0.252387 12.59109 0.020045 0.984008 

Age 0.044553 0.060754 0.733345 0.463348 

BMI 0.095452 0.379431 0.251567 0.801376 

SAPSIII -0.03001 0.104549 -0.28705 0.774074 

Risk of death -0.02466 0.10518 -0.23446 0.814627 

SOFA -0.32056 0.481632 -0.66557 0.505689 

Systemic 
hypertension -37.2832 26621.91 -0.0014 0.998883 

Diabetes mellitus 11.26478 29532.89 0.000381 0.999696 

Coronary 
insufficiency -40.8265 49717.1 -0.00082 0.999345 

COPD -40.2845 19296.76 -0.00209 0.998334 

Neoplasm -65.1783 38574.23 -0.00169 0.998652 

N Organ dysfunction -23.9739 59078.71 -0.00041 0.999676 

AP 26.33647 59078.71 0.000446 0.999644 

Lactate 23.68586 59078.71 0.000401 0.99968 

AKI 65.78835 83621.61 0.000787 0.999372 

Total bilirubin  -15.4047 57284.91 -0.00027 0.999785 

INR -13.9761 62602.3 -0.00022 0.999822 

Platelets 41.83436 58239.31 0.000718 0.999427 

PaO2/FiO2  41.27298 62623.81 0.000659 0.999474 
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4. CONCLUSÃO 

 

Conforme exposto nos capítulos anteriores, os autores concluem que: 

 Os pacientes sépticos e com choque séptico possuem importantes alterações no 

metabolismo lipídico, em especial nos fosfolipídios, esfingolipídios e no 

metabolismo dos ácidos graxos; 

 Foi possível identificar moléculas lipídicas diferenciais de resposta a um insulto 

infeccioso em pacientes com sepse tanto em comparação a pacientes saudáveis 

quanto em pacientes com SIRS; 

 A redução de importantes mediadores anti-inflamatórios, os ácidos graxos 

poliinsaturados da família n-3 e os ésteres de ácidos graxos ramificados de ácidos 

graxos hidroxilados (FAHFA 36:4) foram evidenciados em pacientes com 

diagnóstico de sepse; 

 Os resultados apontam para uma elevação nos níveis de derivados de carnitina, 

moléculas relacionadas a distúrbios da oxidação mitocondrial dos ácidos graxos, 

em especial a L-octanoilcarnitina identificada como candidato a biomarcador que 

poderá corroborar no diagnóstico e prognóstico da sepse.  

 

Os autores sugerem a realização de mais estudos prospectivos, respaldados em modelos 

de estimativa de tamanho amostral e testes de poder estatístico, desenhados para 

investigar o comportamento destas moléculas frente a uma infecção e de correlacionar 

com desfechos clínicos importantes. Ainda, a descoberta de um único biomarcador ideal, 

com alta sensibilidade e especificidade, de fácil acessibilidade e baixo custo envolve 

padrões rigorosos de validação intra e inter laboratorial afim de estabelecer sua utilidade 

clínica. 
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